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ABSTRACT. The fold-and-cut theorem states that one can find a flat folding of paper, so

that one complete straight cut on the folding creates any desired polygon. We extend

this problem to curved origami for piecewise C1 simple closed curves. Many of those

curves on paper turn out to be cut by a straight plane after we fold the paper into a

conical shape—the surface consists of half-lines with a common vertex. Let γ: I → R2

be a piecewise C1 simple closed curve such that there exists a parametrization γ(ψ) =

(r(ψ) cosψ, r(ψ) sinψ) on ψ ∈ [0,2π) for a Lipschitz continuous function r : R →
(0,∞). We prove that there exists a conical folding of the plane so that γ can be cut

by a plane on the folding if a certain condition on angular total variation holds.

1. INTRODUCTION

Origami is the art of folding paper, which also often refers to the mathematical study

concerned with the paper folding. The fold-and-cut theorem [DDL00] states that we

can find a flat folding of paper, so that one complete straight cut on folding creates any

desired polygon. Inspired by this theorem we suggest in this paper a problem not for

flat folding but for curved folding embedded in three-dimensional Euclidean space R3.

Once you have drawn a curve on a piece of paper, for many of the cases, we can do

crumple the paper and cut it with one straight plane to cut out exactly the curve drawn.

To study origami in three-dimensional space, we consider the metric preserving map

of Ω ⊂ R2 called an origami to model the process of folding the paper. For the given

curve γ: I → R2 and an origami u: Ω ⊂ R2→ R3, the curve γ is called a cut on origami

u if there exists a plane S ⊂ R3 such that S ∩ im u = u(imγ). An origami is defined

as a Lipschitz continuous piecewise C1 map u: Ω→ R3 for connected set Ω ⊂ R2 such

that the Jacobian matrix Du is a 3× 2 matrix with orthonormal columns for all points

of Ω \ Σu, where Σu ⊂ Ω is the set of the points at which u is not differentiable. In

addition, to make our model more physically realizable, we require the paper not to

intersect itself transversally. See [DMP08].
We consider single vertex origami in the curved fold-and-cut problem. The image

of the single vertex origami becomes a (general) cone in R3, a surface generated by

a continuously moving half-line cast from a common apex point. We define a conical

origami as a 1-homogeneous origami, that means the equation u(t v) = tu(v) holds for

all t ∈ R satisfying v, t v ∈ Ω. Then, the image of a conical origami should be contained

in a cone and the origin of R2 maps to the vertex of the cone under the conical origami.
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2 I. CHOI

This paper discusses the existence of the conical origami u such that the given piecewise

C1 simple closed curve is a cut on u.

We set up Cartesian coordinates (x , y) on R2, and cylindrical coordinates (ρ,ψ, z)
on R3. The ρψ-plane of R3 is meant to parallel with a plane S, which intersects the

image of the origami u exactly in u(imγ) where γ is the given simple closed curve in

R2. In Section 2, Proposition 2.1 on piecewise C1 simple closed curves on R2 describes

some necessary conditions for the existence of the conical origami u such that the given

piecewise C1 simple closed curve is a cut on u. If such an origami u exists, then the

interior of the given simple closed curve γ is required to be star-shaped (there exists

a point called the kernel such that any half-line cast from the point intersects γ only

once). More precisely, the kernel of the star-shaped curve is the origin. The proposition

guarantees the existence of a Lipschitz continuous function r : R→ (0,∞) that is peri-

odic with period 2π, such that the piecewise C1 simple closed curve γ is parametrized

by ψ ∈ I = [0,2π) as γ(ψ) = (r(ψ) cosψ, r(ψ) sinψ). In this paper, I always denotes

the half-open interval [0,2π).
Consider the piecewise C1 simple closed curve γ in R2 that is a cut on a certain

conical origami. Then, we have the Lipschitz continuous function r : R→ (0,∞) that

is used to parametrize γ. In fact, because the curve γ is piecewise C1, the function

r is also piecewise C1. Let u be one of the conical origami on which γ is a cut, such

that the z-coordinates of all points on u ◦ γ are −z for a positive real number z. For

the function r, a function Az : [0,2π] → [0,∞) is defined to be a strictly increasing

function whose value is equal to the amount of the angle that the point u(γ(θ )) has

traveled over θ ∈ [0,ψ] in the cylindrical coordinates. In other words, the function Az

is the total variation of the angular coordinate of the polar parametrization u, so we call

Az(ψ) the total angular variation of u up to ψ. Actually the function Az is independent

of u, it can be defined only by the function r and a real number z. The function Az is

defined by the following formula:

Az(ψ) :=

∫ ψ

0

√

√

√

�

r(θ )
p

r(θ )2 − z2

�2

−
�

zr ′(θ )
r(θ )2 − z2

�2

dθ .

Our main results are summarized by a part of Theorem 3.1 as follows:

Theorem. Let γ be a piecewise C1 simple closed curve in R2 such that there exists a

parametrization γ(ψ) = (r(ψ) cosψ, r(ψ) sinψ) on ψ ∈ I = [0,2π) for a Lipschitz

continuous function r : R→ (0,∞) that has period 2π. If

sup
z

Az(2π)≥ 2π,(1)

then there exists a conical origami u such that γ is cut on u.

We prove the theorem by directly presenting the conical origami in cylindrical coordi-

nates, that cuts the given simple closed curve.

In Section 2, we define new terminologies such as conical origami and give the

proposition describing the necessary conditions and existence of the star-shaped parametriza-

tion of the given piecewise C1 simple closed curve. In Section 3, we define the function
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Az and the main theorem. The idea of proof will be also given. In section 4, we prove

the main theorem.

2. DEFINITION OF CONICAL ORIGAMI AND CUT

We define a conical origami to be a Lipschitz continuous piecewise C1 map for ana-

lytic models of paper folding. For a connected set Ω ⊂ Rn and a piecewise C1 map

f : Ω → Rm, the singular set Σ f ⊂ Ω of the map f refers to the set of points at

which f is not differentiable. The map f is C1 on Ω \ Σ f , and also, the singular set

Σ f is closed in Ω and each arbitrary compact set in Ω intersects a finite number of

connected components of Ω \ Σ f ; it is the definition of a piecewise C1 function. A

conical origami is a 1-homogeneous origami, where the origami will be defined as a

kind of rigid map that models the paper folding embedded in R3. See [DMP08]. See

[ABD+04, Hul94, Kaw89, Lan96] for usual geometric approaches to origami.

An origami is a Lipschitz continuous piecewise C1 map u: Ω → R3 such that the

Jacobian matrix Du has orthonormal columns and transversal self-intersection is ex-

cluded. To make the model more physically realizable, we allow precise overlappings

which can be approximated by injective maps, that means, im u can intersect itself tan-

gently. For example, the map u(x , y) = (|x |, y, 0) is not injective but can be obtained as

k→∞ of the injective maps uk(x , y) = (|x | cos(1/k), y, x sin(1/k)), which represent

the actual folding process along time (see [DMP08]). In this paper, we focus only on

conical origamis.

Definition (Conical Origami). Let Ω be a connected set in R2. A Lipschitz continuous

piecewise C1 map u: Ω→ R3 is a conical origami if it satisfies the following: the Jaco-

bian matrix Du has orthonormal columns for all points ofΩ\Σu; there exists a sequence

of maps uk : R2 → R3 that are Lipschitz continuous and injective, such that uk → u in

the uniform convergence; the equation u(t v) = tu(v) holds for all t ∈ R satisfying that

v, t v are in Ω.

The 1-homogeneity makes the image of u be contained in a cone and the point u(O)
becomes the vertex of the conical origami. If the condition about the homogeneity is

excluded, then the map u is called just an origami. See [DMP08].
The fold-and-cut theorem states that we can find a flat folding of paper, so that one

complete straight cut on folding creates any desired plane graph of cuts made up with

straight sides. Similarly, within three-dimensional space, we ask there is a (conical)

origami map such that a certain planar straight cut on folding creates the given curve,

especially piecewise C1 simple closed curve, on the unfolded paper. If there is such an

origami u, we call the curve a cut on u. See [DDL00] for more details on the fold-and-cut

theorem.

Definition (Cut). Let Ω be a connected set in R2. A curve γ: I → Ω is a cut on origami

u: Ω→ R3 if there exists a plane S ⊂ R3 such that S ∩ im u= u(imγ).
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FIGURE 1. The point u(O) cannot be in the plane S and the curve γ is

star-shaped.
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FIGURE 2. The function r is Lipschitz continuous.

We approach the problem about the simple closed curve by a parametrization. Also

the conical origami is parametrized by a metric preserving map whose codomain is

presented in cylindrical coordinates. The cylindrical coordinate system is set up by

letting the plane S containing u(imγ) be parallel to the ρψ-plane.

The following proposition presents the conditions required for a piecewise C1 simple

closed curve to be a cut on a conical origami, regarding the existence of the polar

parametrization. Using the function r defined in the following proposition, we have

the polar equation ρ = r(ψ) represent the curve γ.

Proposition 2.1. Let γ be a piecewise C1 simple closed curve in R2 and u be a conical

origami. If γ is a cut on u, then there exists a Lipschitz continuous function r : R→ (0,∞)
which has period 2π, such that γ has a parametrization γ(ψ) = (r(ψ) cosψ, r(ψ) sinψ)
on ψ ∈ I = [0,2π).

Proof. Let O denote the origin of R2. First we prove that γ is star-shaped with kernel

O, that is, any half-line cast from O intersects γ only once. Then, we can represent any

point on γ by (r(ψ) cosψ, r(ψ) sinψ) for a periodic piecewise C1 function r : R2 →
(0,∞) with period 2π. After that, we prove that the function r is Lipschitz continuous

if γ has the parametrization. Since the star-shaped curve implies that r is a function on

I and positive valued, the proof is complete if we prove that γ is star-shaped and the

function r is Lipschitz continuous.

We claim that u(O) cannot be in the plane S, where the plane S satisfies S ∩ im u =
u(imγ).

For the proof, assume that u(O) is in the plane S. For a point P 6= O which is on the

curve γ, we have u(P) ∈ S. If we let η be a half-line on R2 cast from O and passing



FOLD-AND-CUT OF SIMPLE CLOSED CURVE UNDER CONICAL ORIGAMI 5

through the point P, then u(η) is also half-line cast from u(O) and passing through

u(P) by 1-homogeneity. The plane S contains u(η) because u(O) and u(P) are in S.

The image (im u) also contains the half-line u(η) because (im u) is a conical surface.

Since u(η) is included in both S and (im u), we obtain u(η) ⊂ u(imγ) from the relation

S ∩ im u = u(imγ). So, the curve u(γ) is unbounded and it is a contradiction for γ to

be a closed curve. Therefore u(O) cannot be in the plane S.

(star-shapedness) Assume that γ is not star-shaped. If a half-line η cast from O inter-

sects imγ more than once, the image u(η) also intersects u(γ) more than once. Since

S ⊃ u(imγ) ⊃ u(imγ)∩ u(η) and the cardinality of u(imγ)∩ u(η) is greater than one,

S contains the half line u(η) and also the point u(O). By the same argument for the

previous claim, each half-line η cast from O intersects imγ at most once. If there is a

half-line cast from O that does not meet imγ, the point O should be in the interior of

the simple closed curve γ and there exists a half-line which intersects imγ more than

twice. Therefore all of the half-lines cast form O intersects imγ only once, and the γ is

star-shaped.

(Lipschitz continuity) For a point P on the curve γ, there exists a piecewise C1 func-

tion r : R→ (0,∞) such that we have P = γ(ψ) = (r(ψ) cosψ, r(ψ) sinψ) on ψ ∈ I

because γ is star-shaped and the kernel is O. Let l be a tangent line at a point P, and H

be the foot of the perpendicular from O to l. From r ′(ψ)
r(ψ) = tan
�

π
2 −∠OPH
�

, we have

the length of the line segment OH as follows:

OH(ψ) = r(ψ) sin∠OPH =
r(ψ)2
p

r(ψ)2 + r ′(ψ)2
.

Let z be the distance between the point u(O) and the plane S in R3. Since S contains

u(l), we have 0 ≤ z ≤ OH(ψ) for all ψ. If the derivative of r is unbounded, then the

value of OH(ψ) can be arbitrarily small. So we have z = 0, it implies that u(O) is on

the plane S. The function r is piecewise C1 and the derivative of r is bounded, hence

the function r is Lipschitz continuous.

Note that the function r has positive lower bound, since O is in the interior of γ.

In Theorem 3.1, a concrete construction of the conical origami is presented on the

cylindrical coordinates for the given piecewise C1 simple closed curve, that has the star

shaped parametrization with Lipschitz continuous function r and satisfies the condition

(1). In fact, the coordinate system on R2 and the preimage of the vertex of the conical

origami is given in advance.

3. THE MAIN THEOREM AND THE IDEA OF PROOF

For a given piecewise C1 simple closed curve γ that satisfies the condition (1) and

the assumption of Proposition 2.1, we propose a map u: R2 → R3 in Theorem 3.1.

Let r : R→ (0,∞) be a Lipschitz continuous function with period 2π such that γ has

a parametrization γ(ψ) = (r(ψ) cosψ, r(ψ) sinψ) on ψ ∈ I = [0,2π). We introduce

total angular variation Az(ψ) for the definition of the map u. After stating Theorem 3.1,
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r(ψ+ dψ)
z

S

(0,0,−z)

u(O)

u(γ(ψ))
u(γ(ψ+ dψ))
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FIGURE 3. The infinitesimal triangle and its projection to the plane.

we are going to describe our plan to prove the theorem. We prove that this map u is a

conical origami and γ is cut on u in Section 4.

For a moment, assume that u is a conical origami. Suppose that the given curve

γ parameterized by angle is a cut on u and the z-coordinates of all points on u ◦ γ
are −z. We suggest a function Az : [0,2π] → [0,∞) defined as a strictly increasing

function whose value is equal to the amount of the angle that the point u(γ(θ )) has

traveled over θ ∈ [0,ψ] in the cylindrical coordinates. In other words, the function Az

is the total variation of the angular coordinate of the polar parametrization u, so we call

Az(ψ) the total angular variation of u up to ψ. If the image u(imγ) is also star-shaped,

then Az(ψ) is the angular coordinate of u(γ(ψ)).
Consider a infinitesimal triangle constructed by three points u(γ(ψ + dψ)), u(O),

and u(γ(ψ)). Recall that the range of the map u ◦ γ is parallel to the ρψ-plane, which

is the plane S in the definition of a cut. By projection of this triangle to S, we say

that the infinitesimal value of the total angular variation dAz(ψ) denotes the size of

the angle constructed by u(γ(ψ + dψ)), (0,0,−z), and u(γ(ψ)). If this infinitesimal

angle was integrated from 0 to ψ, then the value would be same with Az(ψ). Since u

preserves the metric, the infinitesimal angle dψ denotes the angle dAz(ψ) before the

projection. Actually the function Az is independent of u, it can be defined only by the

function r and a positive real number z.

The function Az can be calculated through the projection of the angle mapped by u

on the plane S. Let z be the altitude of the vertex of the conical origami. By the law of

cosines, we have a relation between the infinitesimal dψ and dAz(ψ) as follows:

r(ψ)2 + r(ψ+ dψ)2 − 2r(ψ)r(ψ+ dψ) cos dψ

=
�

r(ψ)2 − z2
�

+
�

r(ψ+ dψ)2 − z2
�

− 2
Æ

r(ψ)2 − z2
Æ

r(ψ+ dψ)2 − z2 cos dAz(ψ).

By the half-angle formula for sine and some calculations, we obtain the square of the

derivative of Az:
�

dAz(ψ)
dψ

�2

=
�

r(ψ)
p

r(ψ)2 − z2

�2

−
�

zr ′(ψ)
r(ψ)2 − z2

�2
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where r ′ denotes the derivative of r. Note that Az can be determined only by r and z.

Since the sign of the derivative of Az with respect to ψ cannot be determined in here,

we define the angular coordinate of u as the integral of the product of dAz/dψ and

either 1 or (−1) in Theorem 3.1.

Before giving the definition of the function Az , the domain of z is defined as the open

interval Ur that depends on the function r. If the nonnegative real number z does not

belong to Ur , then the image of u is the plane if z = 0; there exist a point such that Az is

not strictly increasing if z = sup Ur ; the integrand of the integral Az is not real number

if z > sup Ur .

Definition. Let γ be a piecewise C1 simple closed curve inR2 that has a parametrization

γ(ψ) = (r(ψ) cosψ, r(ψ) sinψ) onψ ∈ I = [0,2π), for a Lipschitz continuous function

r : R→ (0,∞) with period 2π. The open interval Ur is defined as follows:

Ur :=

�

0 , inf
ψ∈I\Σr

r(ψ)2
p

r(ψ)2 + r ′(ψ)2

�

,

where r ′ denotes the derivative of the function r and Σr denotes the singular set. For

each z ∈ Ur , an injective function Az : [0,2π] → [0,∞) is defined by the following

integral:

Az(ψ) :=

∫ ψ

0

√

√

√

�

r(θ )
p

r(θ )2 − z2

�2

−
�

zr ′(θ )
r(θ )2 − z2

�2

dθ .

The value Az(ψ) is called the total angular variation of u up to ψ.

In particular, we define A0(ψ) to be equal to ψ. Because the total angular variation

Az does not allude the sign of the infinitesimal change of the angular coordinate, some-

thing to indicate the sign is required. For a subset κ of the interval I , let Aκz (ψ) be a

abbreviation of the integral

Aκz (ψ) =

∫ ψ

0

(−1)1κ(θ )A′z(θ ) dθ ,

where A′z denotes the derivative of Az with respect to ψ and 1κ is the indicator func-

tion of κ. The value of Aκz (ψ) can represent the exact angular coordinate of a conical

origami in cylindrical coordinates. If ψ belongs to κ, then the infinitesimal change of

the angular coordinate becomes negative.

Since the derivative of Az is positive, the function Az is strictly increasing in ψ and

thereby it has an inverse function. We will often use the property that Az is strictly

increasing. The curve γ is piecewise C1, so the function r is C1 on the set R \Σr . The

derivative r ′ is bounded since the function r is Lipschitz continuous, and the function

r has a positive lower bound. So, the open interval Ur is non-empty.

Theorem 3.1. Let r : R → (0,∞) be a Lipschitz continuous function with period 2π

and γ be a piecewise C1 simple closed curve in R2 that has a parametrization γ(ψ) =
(r(ψ) cosψ, r(ψ) sinψ) on ψ ∈ I = [0,2π). If

sup
z∈Ur

Az(2π)≥ 2π,(1)
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then there exist a closed interval κ ⊂ I and a real number z ∈ Ur such that a map u: R2→
R3 is a conical origami and γ is a cut on u; the map u is defined as follows:

u(ρ,ψ)polar =

�

ρ

√

√

1−
z2

r(ψ)2
, Aκz (ψ) , −

zρ
r(ψ)

�

c y l indrical

.(2)

The condition (1) is required. For an example let r(ψ) = 96 + arccos(cos100ψ),
then |r ′(ψ)|> r(ψ) for allψ, so A′z(ψ)< 1 for all z andψ; since A′z(ψ)< 1 if and only

if r(ψ)2 − z2 < r ′(ψ)2. For this example we have

Az(2π) =

∫ 2π

0

A′z(ψ) dψ<

∫ 2π

0

dψ= 2π

for all z ∈ Ur .

The proof of Theorem 3.1 will be given at the end of Section 4. Note that the map

u defined in Theorem 3.1 as (2) depends only on r and κ and z, because we defined

Az only with r and z. Let u be the map defined in Theorem 3.1 as (2). The altitude of

a point u(ρ cosψ,ρ sinψ) = u(ρ,ψ)polar in cylindrical coordinate is −z if and only if

ρ = r(ψ), that is, the point (ρ cosψ,ρ sinψ) is on the curve γ. So we get S ∩ im u =
u(imγ) if S is the plane containing points whose z-coordinates are −z, and the curve γ

is a cut on u if u is an origami.

Recall the definition of the conical origami. To prove that the map u is a conical

origami, we have to show that the following four propositions are true:

• The Jacobian matrix Du has orthonormal columns for all points of R2 \Σu.

• The map u is 1-homogeneous.

• There exists a sequence of maps uk that are injective and uniformly converges

to u.

• The maps uk and u are Lipschitz continuous, and u is piecewise C1.

We give the proof of Theorem 3.1 throughout Section 4. For the map u defined in

Theorem 3.1, Theorem 4.1 shows that u preserves metric and Proposition 4.2 shows

that u is 1-homogeneous. The proof of the other two conditions for conical origami is

divided into two cases: the function r is a constant function or not. The case of the

nonconstant function is treated in Theorem 4.3, 4.4, and 4.5; the case of the constant

function is treated in Theorem 4.6.

In the case of nonconstant function, it is proved that we can find an injective u, so

that we can let uk be same with u. For an interval κ = [α,β] ⊂ I and a real number

z ∈ Ur , the following three conditions play an important role in the proof.

(1) both 2Az(α)− Az(β) and 2Az(β)− Az(α) belong to the interval [0, Az(2π));
(2) the function r is strictly increasing over the interval

J = [A−1
z (2Az(α)− Az(β)), A−1

z (2Az(β)− Az(α))];

(3) the value of Aκz (2π) is equal to 2π.

Recall that the map u is determined by only κ and z if the curve γ and the function r

were already given. Theorem 4.3 shows that there exist an interval κ= [α,β] ⊂ I and

a real number z ∈ Ur satisfying the three conditions if r is nonconstant. Theorem 4.4
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shows that the map u is injective if the three conditions are satisfied. Theorem 4.5

shows that the map u is Lipschitz continuous and piecewise C1 if the third condition of

the three conditions is satisfied.

ψ

Aκz (ψ)

A−1
z (2Az(α)− Az(β))

α β
A−1

z (2Az(β)− Az(α))
2π

Aκz (β)
Aκz (α)

2π

FIGURE 4. The rough shape of the graph of the function Aκz for a closed

interval κ= [α,β].

Condition (1) ensures the existence of the interval J in Condition (2), where A−1
z

denotes the inverse function of Az . The interval J in Condition (2) is used to prove

that u is injective. To prove the injectivity of u, it is enough to show that the curve

u ◦ γ is simple because the image of u is a cone. A point u(γ(ψ)) traces the curve u ◦ γ
counter-clockwise, but clockwise when ψ is in the interval κ. So, the curve u ◦ γ can

intersects itself only if the angular coordinate of u is between Aκz (β) and Aκz (α). From

the definition of Aκz , we have

Aκz
�

A−1
z

�

2Az(α)− Az(β)
�

�

= Aκz (β) , Aκz
�

A−1
z

�

2Az(β)− Az(α)
�

�

= Aκz (α).

It implies that we do not have to check whether u ◦ γ intersects itself for ψ /∈ J . The

condition that r is strictly increasing over J that u ◦ γ is injective. The details of this

idea will be presented rigorously in Theorem 4.4. Condition (3) is necessary for u to be

continuous because the map u is given on the polar coordinates. By these conditions,

we can conclude that there exists an conical origami u on which the given simple closed

curve γ is a cut if the function r is not a constant function.

If the function r is constant, the curve γ is a circle such that the center is the origin

of R2 and the radius is r. Intuitively, we can see any circle is a cut on a certain conical

origami, which is folded like filter paper. In this case, the sequence of maps uk is

required to be different from u since the limit point u is not injective, so we define

a sequence uk separately from u. Theorem 4.6 shows that a filter-paper-like folding

satisfies the third and fourth condition to be a conical origami.

4. THE PROOF OF THE MAIN THEOREM

Theorem 4.1. Let r : R→ (0,∞) be a Lipschitz-continuous piecewise-C1 function. For a

closed interval κ= [α,β] ⊂ I = [0,2π) and a real number z ∈ Ur , let u: R2→ R3 be the

map defined in Theorem 3.1 (2). The map u is a local isometric immersion on R2 \Σu,

that is, the Jacobian matrix Du has orthonormal columns for all points of R2 \Σu.
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J

r(ψ)

ψ
α β

p
r2 − z2

Az (ψ)
Az (α) Az (β)

2Az (α)− Az (β) 2Az (β)− Az (α)

p
r2 − z2

Aκz (ψ)
Aκz (α)Aκz (β)

‖ ‖ ‖ ‖

R2
O

γ(α)
γ(β)

S
u(O)

S
u(O)

u(γ(α))

u(γ(β))

FIGURE 5. If the function r is strictly increasing over J , then the map

u is injective.

Proof. The partial derivatives of u in cylindrical coordinates are

∂ u
∂ ρ
=

�
√

√

1−
z2

r(ψ)2
, 0 , −

z
r(ψ)

�

,

and

∂ u
∂ψ
=

�

ρz2r ′(ψ)

r(ψ)2
p

r(ψ)2 − z2
, (−1)1κ(ψ)A′z(ψ) ,

ρzr ′(ψ)
r(ψ)2

�

,

where the derivative of the function Az is

A′z(ψ) =

√

√

√

�

r(ψ)
p

r(ψ)2 − z2

�2

−
�

zr ′(ψ)
r(ψ)2 − z2

�2

.

The metric g on the image of u is

g =







1 0 0

0 ρ2
�

1− z2/r(ψ)2
�

0

0 0 1







because the codomain of u was given in the cylindrical coordinate system. Then, we

have a calculation of the first fundamental form with the inner product in the metric g

as follows:

E =


∂ u
∂ ρ

,
∂ u
∂ ρ

·

= 1 , F =


∂ u
∂ ρ

,
∂ u
∂ψ

·

= 0 , G =


∂ u
∂ψ

,
∂ u
∂ψ

·

= ρ2 .

It is same with the metric of polar coordinates, hence u is a local isometric immersion

at all points at which u is differentiable.

Proposition 4.2. Let r : R → (0,∞) be a Lipschitz-continuous piecewise-C1 function.

For a closed interval κ = [α,β] ⊂ I = [0,2π) and a real number z ∈ Ur , let u: R2→ R3

be the map defined in Theorem 3.1 as (2). The the map u is 1-homogeneous.

Proof. It is obvious by definition.
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Theorem 4.3. Let r : R → (0,∞) be a Lipschitz continuous function with period 2π

and γ be a piecewise C1 simple closed curve in R2 that has a parametrization γ(ψ) =
(r(ψ) cosψ, r(ψ) sinψ) onψ ∈ I = [0,2π). If r is not a constant function and supz∈Ur

Az(2π)≥
2π, then there exists an interval κ= [α,β] ⊂ I and a real number z ∈ Ur that satisfy:

(1) both 2Az(α)− Az(β) and 2Az(β)− Az(α) belong to the interval [0, Az(2π));
(2) the function r is strictly increasing over the interval

J = [A−1
z (2Az(α)− Az(β)), A−1

z (2Az(β)− Az(α))];

(3) the value of Aκz (2π) is equal to 2π.

Proof. First assume that there is z such that Az(2π) = 2π. For this z, let α = β . Then,

we can say that r is strictly increasing over J = [α,β] = {α} since 2Az(α)− Az(β) =
2Az(β)− Az(α) = α= β . Furthermore, the measure of κ= [α,β] is 0, so we get

Az(2π) = Aκz (2π) = 2π.

The set κ= {α} and this z satisfy the three conditions.

Otherwise if there is no z such that Az(2π) = 2π, then Az(2π) > 2π for all z ∈ Ur

because Az is continuous and

sup
z∈Ur

Az(2π)≥ 2π.

Throughout the rest of the proof, assume that Az(2π)> 2π for all z.

Suppose that the function r is strictly increasing on a positive length interval [a, b] ⊂
I . Because the function r is piecewise C1 and periodic, such an interval [a, b] exists.

Let α0(t) and β0(t) be a function defined on Ur by:

α0(t) = A−1
t

�

2
3

At(a) +
1
3

At(b)
�

,β0(t) = A−1
t

�

1
3

At(a) +
2
3

At(b)
�

.

From At(a) < At(b), we get α0(t) < β0(t) for a sufficiently small t. Let z0 be a real

number in Ur satisfying

sup
t<z0

α0(t)< inf
t<z0

β0(t).

Let us define κ as an interval [α,β] ⊂
�

supt<z0
α0(t), inft<z0

β0(t)
�

such that

0< β −α <
Az0
(2π)− 2π

2supψ∈I\Σr
A′z0
(ψ)

.

For the fixed κ, consider the value of Aκz (2π) as a function of z. This function is equal

to Az(2π)− 2
�

Az(β)− Az(α)
�

and continuous with respect to z. By letting z = z0, we

obtain

Aκz0
(2π) = Az0

(2π)− 2

∫ β

α

A′z0
(θ ) dθ

≥ Az0
(2π)− 2(β −α) sup

ψ∈I\Σr

A′z0
(ψ)> 2π.

On the other hand, letting z = 0, we get

Aκ0(2π) = 2π− 2(β −α)< 2π.
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By the intermediate value theorem, there exists z ∈ (0, z0) satisfying the third condition.

We will show that these κ and z satisfy the other two conditions.

From the definition of κ, We get

α0(z)≤ sup
t<z0

α0(t)≤ α , β ≤ inf
t<z0

β0(t)≤ β0(z).

It implies that Az(α0(z))≤ Az(α), Az(β)≤ Az(β0(z)) and

Az(a) = 2Az(α0(z))− Az(β0(z))≤ 2Az(α)− Az(β)

≤ 2Az(β)− Az(α)≤ 2Az(β0(z))− Az(α0(z)) = Az(b).

Since 2Az(α) − Az(β) and 2Az(β) − Az(α) belong to the interval [Az(a), Az(b)], the

two values are in the range of Az . Also, we have the interval J = [A−1
z (2Az(α) −

Az(β)), A−1
z (2Az(β) − Az(α))] be a subset of [a, b], which the function r is strictly in-

creasing on. Hence, the first and second conditions are satisfied.

Theorem 4.4. Let r : R → (0,∞) be a Lipschitz continuous function with period 2π

and γ be a piecewise C1 simple closed curve in R2 that has a parametrization γ(ψ) =
(r(ψ) cosψ, r(ψ) sinψ) on ψ ∈ I = [0,2π). For a closed interval κ = [α,β] ⊂ I and a

real number z ∈ Ur , let u: R2→ R3 be the map defined in Theorem 3.1 as (2). The map

u is injective if κ and z satisfy the following conditions:

(1) both 2Az(α)− Az(β) and 2Az(β)− Az(α) belong to the interval [0, Az(2π));
(2) the function r is strictly increasing over the interval

J = [A−1
z (2Az(α)− Az(β)), A−1

z (2Az(β)− Az(α))];

(3) the value of Aκz (2π) is equal to 2π.

Proof. Assume that u is not injective, that is, there exist two distinct points (ρ1,ψ1), (ρ2,ψ2)
on polar coordinates such that u(ρ1 cosψ1,ρ1 sinψ1) = u(ρ2 cosψ2,ρ2 sinψ2). From

ρ1

√

√

1−
z2

r(ψ1)2
= ρ2

√

√

1−
z2

r(ψ2)2
, −

zρ1

r(ψ1)
= −

zρ2

r(ψ2)
,

we obtain ρ1 = ρ2 and r(ψ1) = r(ψ2); suppose that 0≤ψ1 <ψ2 < 2π. Also, we have

Aκz (ψ1) ≡ Aκz (ψ2) (mod 2π). The function Aκz : [0,2π]→ [0,∞) has local minimums

at ψ= 0,β , and local maximums at ψ= α, 2π. By the third condition, we have

Aκz (2π) = Az(2π)− 2
�

Az(β)− Az(α)
�

= 2π,

and by the first condition, the following inequalities hold:

Aκz (α) = Az(α) = 2π−
�

Az(2π)−
�

2Az(β)− Az(α)
�

�

< 2π,

Aκz (β) = Az(α)−
�

Az(β)− Az(α)
�

≥ 0.

Therefore, the value of Aκz (ψ) for ψ ∈ I belongs to the interval I and we obtain

Aκz (ψ1) = Aκz (ψ2).
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If we suppose [ψ1,ψ2]∩ κ = ∅, then Aκz (ψ2)− Aκz (ψ1) = Az(ψ2)− Az(ψ1) > 0. So

we get ψ2 ≥ α and ψ1 ≤ β . Since Aκz (α) and Aκz (β) are the local extrema of Aκz , we

have

Aκz (α)− Aκz (ψ1) = |Az(α)− Az(ψ1)| ≥ Az(α)− Az(ψ1)

and

Aκz (ψ2)− Aκz (α)≥ Aκz (β)− Aκz (α) = −
�

Az(β)− Az(α)
�

.

Combining these two inequalities, we obtain Az(ψ1)≥ 2Az(α)− Az(β) by

0= Aκz (ψ2)− Aκz (ψ1)≥ 2Az(α)− Az(β)− Az(ψ1).

Similarly, we also obtain Az(ψ2)≤ 2Az(β)−Az(α). These imply thatψ1 andψ2 belong

to the interval J = [A−1
z

�

2Az(α)− Az(β)
�

, A−1
z

�

2Az(β)− Az(α)
�

]. Because the function

r is strictly increasing over J , r(ψ1) cannot be equal to r(ψ2). The assumption that u

is not injective leads to a contradiction.

Theorem 4.5. Let r : R → (0,∞) be a Lipschitz continuous function with period 2π

and γ be a piecewise C1 simple closed curve in R2 that has a parametrization γ(ψ) =
(r(ψ) cosψ, r(ψ) sinψ) on ψ ∈ I = [0,2π). For a closed interval κ ⊂ I and a real

number z ∈ Ur , let u: R2 → R3 be the map defined in Theorem 3.1 as (2). The map u is

Lipschitz continuous and piecewise C1 if Aκz (2π) = 2π.

Proof. If we prove the continuity of u, the Lipschitz continuity is proved since each

component of the derivatives of u is bounded for each variable. Also, u is piecewise C1

since each component of u is piecewise C1. Let us prove the continuity of u.

Since each component of u is continuous, it is suffice to prove continuity in polar

coordinates, that is, to check that the following conditions hold:






for all ψ , lim
ρ→0

u(ρ,ψ) = u(0,ψ)

for all ρ , u(ρ, 0) = u(ρ, 2π)

where u(ρ,ψ) is defined on a polar coordinate system. Recall that the map u is defined

as

u(ρ,ψ)polar =

�

ρ

√

√

1−
z2

r(ψ)2
, Aκz (ψ) , −

zρ
r(ψ)

�

c y l indrical

.

The first condition is clearly true. The second condition is also true because r(2π) =
r(0) implies that the radial and axial components of u(ρ, 0)polar and u(ρ, 2π)polar are

respectively same, and the difference of the angular coordinates Aκz (2π)−Aκz (0), which

is equal to 2π, is an integer multiple of 2π. Therefore, the map u is continuous.

In Theorem 4.6, we deal with the case that the function r is a constant function.

Since the derivative of r is 0, we have Ur = (0, r) and A′z = r/
p

r2 − z2. For the simple

statement of the proof, the notation A′ still denotes r/
p

r2 − z2 for given z.
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ψ

uρ

2πA′−1
A′ π

ρ
A′

1
A′ (ρ +

π
k )

ψ

uψ

2π

2π

A′−1
A′ π

(1− A′)π

FIGURE 6. The radial and angular coordinates of uk.

Theorem 4.6. Let r be a positive real number and γ be a circle parametrized by angle;

γ(ψ) = (r cosψ, r sinψ) on ψ ∈ I = [0,2π). There exists a closed interval κ for every

z ∈ Ur such that the curve γ is a cut on u: R2 → R3, which is defined in Theorem 3.1 as

(2).

Proof. Let z be a real number in (0, r) and A′ = r/
p

r2 − z2. Let κ =
�

0, A′−1
A′ π
�

. Let

uk : R2→ R3 be a sequence of maps such that:

uk(ρ,ψ)polar =
�

ρ

A′
+

1
k
·
ψ

A′ − 1
, −A′ψ , −

zρ
r

�

c y l indrical

for ψ ∈ κ and

uk(ρ,ψ)polar =
�

ρ

A′
+

1
k
·

2π−ψ
A′ + 1

, A′ψ− 2π(A′ − 1) ,
zρ
r

�

c y l indrical

for ψ ∈ [0,2π] \κ.

The sequence uk converges uniformly to a map u as k→∞, which coincides with

what we define in Theorem 3.1 (2) for the interval κ. So, the Jacobian matrix Du has

orthonormal columns for all points of R2 \Σu by Theorem 4.1, and the image of u is

a cone by Proposition 4.2. Assume that there exist distinct points (ρ1,ψ1), (ρ2,ψ2) on

polar coordinates such that uk(ρ1 cosψ1,ρ1 sinψ1) = uk(ρ2 cosψ2,ρ2 sinψ2). Then,

we obtain ρ1 = ρ2, and 0≤ψ1 ≤
A′−1

A′ π <ψ2 < 2π without loss of generality. Solving

the equation

ψ1

A′ − 1
=

2π−ψ2

A′ + 1
, −A′ψ1 = A′ψ2 − 2π(A′ − 1)

we have ψ1 =ψ2 =
A′−1

A′ π. Therefore the map uk is injective.

From uk(ρ, 0)polar = uk(ρ, 2π)polar , we can also prove that uk and u are Lipschitz

continuous and piecewise C1 with the same logic with Theorem 4.5. Therefore, the

map u is a conical origami if κ=
�

0, A′−1
A′ π
�

.

Let S be a set of points whose z-coordinates are −z in the cylindrical coordinate

system. A point u(ρ cosψ,ρ sinψ) is in S if and only if ρ = r, which means the point

is on the circle γ. So, we have S ∩ im u = u(imγ). Hence, the circle γ is a cut on the

conical origami u.

Proof of Theorem 3.1. By Theorem 4.6, Theorem 3.1 is true if the function r is a con-

stant function.
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If the function r is not a constant function, by Theorem 4.1 and Proposition 4.2, the

Jacobian matrix Du has orthonormal columns for all points of R2 \Σu and the image

of u is a cone. There exist a closed interval κ ⊂ I and a real number z ∈ Ur such that:

(1) both 2Az(α)− Az(β) and 2Az(β)− Az(α) belong to the interval [0, Az(2π));
(2) the function r is strictly increasing over the interval

J = [A−1
z (2Az(α)− Az(β)), A−1

z (2Az(β)− Az(α))];

(3) the value of Aκz (2π) is equal to 2π

by Theorem 4.3. By Theorem 4.4 and 4.5, the map u is injective, Lipschitz continuous,

and piecewise C1. If we let uk be a sequence of maps such that uk = u for all positive

integer k, then uk uniformly converges to u and the map u is a conical origami. Let S

be a set of points whose z-coordinates are −z in the cylindrical coordinate system. A

point u(ρ cosψ,ρ sinψ) is in S if and only if ρ = r(ψ), which means the point is on

the curve γ. So, we have S∩ im u= u(imγ). The curve γ is a cut on the conical origami

u for the κ and z satisfying the above three conditions.

Hence, the statement of Theorem 3.1 is true.
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