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Dispersion for the Schrödinger Equation

최익한

November 10, 2018
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1 What is dispersion?

2 Introduction to Fourier transform

3 Method I: Representation formula

4 Method II : Oscillatory integral
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Warning: Almost every proof is not mathematically valid!!
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1.1. Optics

A simplest wave in d-dimensional space can be written in the form

ψ(t, x⃗) = A sin(k⃗ · x⃗− ωt).

There are several terminologies.
Amplitude A
Angular frequency ω = 2πf

Wave number k⃗ : vector with direction of light propagation and size 2π/λ

This is a solution of “wave equation”

∂2

∂t2
ψ(t, x⃗) = v2

∂2

∂x⃗2
ψ(t, x⃗),

which describes waves of constant velocity v = ω/|⃗k|.
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1.1. Optics
The index of refraction is defined as

n :=
c

vp
=

c

ω/|⃗k|
.

Here ω and k⃗ are measured in a transparent material.

Dispersion is the phenomenon of optics that

the index of refraction depends on wavelength.

In other words, we have
ω

|⃗k|
̸= const with respect to k⃗,

which means the relation between ω and k⃗ is not like the solutions of the wave
equation.
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1.2. Dispersion relation

Definition (Dispersion relation)

Dispersion relation is a function ω = ω(k⃗) which describes the relation between
angular frequency ω ∈ R and the wave number vector k⃗ ∈ Rd.

Many physics can be described by language of waves and dispersion relations.

Example.

Cauchy’s formula: dispersion relation of light in transparent materials.

ordinary wave: ω = v|⃗k|

advection: ω = v⃗ · k⃗

heat distribution: ω = iα|⃗k|2

quantum mechanics: ℏω =
|ℏk⃗|2
2m
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1.2. Dispersion relation

With a dispersion relation, we can think about two different velocities:

vp :=
ω

|⃗k|
, v⃗g := ∇

k⃗
ω.

The former is called phase velocity and the latter is called group velocity.
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1.3. Quantization

Then, we will see how each dispersion relation generates a governing equation, by
quantization.

Definition (My own definition of “wave”)
A wave is an element of the vector space of functions with basis containing functions
of the form:

ψ
ω,k⃗

(t, x⃗) = ei(k⃗·x⃗−ωt), ω ∈ R, k⃗ ∈ Rd.

By taking imaginary part, we can see familiar expression for waves: sin(k⃗ · x⃗− ωt).
With a specific dispersion relation ω = ω(k⃗), we can restrict the space of “waves”

in such a way that the basis only contains

ψ
ω(k⃗),k⃗

(t, x⃗) = ei(k⃗·x⃗−ω(k⃗)t), k⃗ ∈ Rd.
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1.3. Quantization

Let
ψ(t, x⃗) =

∑
A(k⃗)ei(k⃗·x⃗−ω(k⃗)t)

be a wave satisfying a dispersion relation ω = ω(k⃗). Then,

ωψ(t, x⃗) = i∂tψ(t, x⃗), k⃗ψ(t, x⃗) = −i∇x⃗ψ(t, x⃗).

By changing the classical quantities to differential operators

ω 7→ i∂t,

k⃗ 7→ −i∇x⃗,

|⃗k|2 7→ (−i∇x⃗) · (−i∇x⃗) =: −∆x⃗,

we get a partial differential equation from the dispersion relation, whose solutions are
waves satisfying the dispersion relation. Let me give an example.
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1.3. Quantization

Example. (Schrödinger equation)

The energy conservation can be written in

E =
|p⃗|2

2m
+ V.

According to de Broglie’s relation

E = ℏω, p⃗ = ℏk⃗,

we get a dispersion relation

ℏω =
|ℏk⃗|2

2m
+ V

If ψ(t, x⃗) is a wave function satisfying the above dispersion relation, then ψ should be
a solution of

iℏ∂tψ(t, x⃗) = −
ℏ2

2m
∆x⃗ψ(t, x⃗) + V (t, x⃗)ψ(t, x⃗).

This is the famous Schrödinger equation.
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1.4. Dispersive equation

The term “dispersive” in PDE is little different from optics.
We say a PDE is “dispersive” if the solutions of different wavelengths propagate at

different group velocities so that the support of the solution spreads out in space as
time flows; the dispersion relation is not linear.

Example.

wave eqn: ω = v|⃗k| ∂2t − v2∆x⃗ = 0 dispersive for d > 1

advection eqn: ω = v⃗ · k ∂t + v⃗ · ∇x⃗ = 0 not dispersive
heat eqn: ω = iα|⃗k|2 ∂t + α∆x⃗ = 0 dispersive

Schrödinger’s eqn: ℏω =
|ℏk⃗|2
2m

iℏ∂t + ℏ2
2m

∆x⃗ = 0 dispersive

There are several ways to capture the property, and the most elementary one is to
find dispersive estimate.
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1.4. Dispersive equation

The objective of this seminar is to prove:

Theorem (Dispersive estimate of Schrödinger operator)

Let u : R1+d → C be the “nice” solution of the initial value problem{
i∂tu(t, x) + ∆u(t, x) = 0, t > 0, x ∈ Rd

u(0, x) = u0(x), t = 0, x ∈ Rd.
(1)

Then, there is a constant Cd depending on d such that for t > 0

sup
x

|u(t, x)| ≤ Cd · t−
d
2

∫
|u0(x)| dx.

Note that this estimate implies a decay of the solution:

sup
x

|u(t, x)| → 0 as t→ ∞.
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1.4. Dispersive equation
The following is well-known.

Lemma (Probability conservation)
Let u be “nice” solution of (1). Then, for all t ∈ R,∫

|u(t, x)|2 dx =

∫
|u0(x)|2 dx.

The following theorem illustrates the mechanism of how the dispersive estimate
proves the dispersiveness:

Corollary

Let S(t) := µ({x ∈ Rd : u(t, x) ̸= 0}) be the area of domain where u does not vanish.
Then,

S(t) → ∞ as t→ ∞.

Proof. Since∫
|u0(x)|2 dx =

∫
|u(t, x)|2 dx ≤ S(t)× sup

x
|u(t, x)|2,

we get

S(t) ≥
∫
|u0(x)|2 dx

supx |u(t, x)|2
→ ∞.
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2.1. Fourier transform

We will say a function is nice if the function satisfies all conditions needed in the
proofs.

Definition (Fourier transform)

Let f : Rd → C be a “nice” function. The Fourier transform of f is

f̂(ξ) :=
1

√
2π

d

∫
f(x)e−ix·ξ dx.

We will use another vector variable ξ for the wave number instead of k = p/ℏ.
The constant is not important, so do not be pedantic. In Fourier analysis, we can

show that π = 1
2

.
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2.1. Fourier transform

We will not prove the following:

Theorem (Fourier inversion formula)

Let f : Rd → C be a “nice” function. Then,

f(x) =
1

√
2π

d

∫
f̂(ξ)eix·ξ dξ.

Fourier transform is a kind of basis change from x to ξ, while the inverse Fourier
transform is from ξ to x.

It is a central problem in Fourier analysis to find some conditions allowing the
inversion theorem to hold.

In most of applications including our problem, the inversion is always possible.
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2.2. Supplementary definitions

Definition (Dirac’s delta function)
The Dirac δ fuction is a map from the space of nice functions to a real number
defined by

δ[f ] = f(0).

In other words, δ is the evaluation at 0.

The following notation is frequently used:

δ[f ] = ⟨δ, f⟩ =
∫
δ(x)f(x) dx.

In this sense, it is convenient to consider δ(x) as a “function” of x such that

δ(x) =

{
∞ , x = 0

0 , x ̸= 0
,

∫
δ(x) dx = 1

since these conditions give∫
δ(x)f(x) dx =

∫
δ(x)f(0) dx = f(0)

∫
δ(x) dx = f(0)

although it is not a function mathematically, but a “generalized” function.
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2.2. Supplementary definitions

There is a very good binary operation in studying Fourier analysis, the convolution.

Definition (Convolution)

Let f, g : Rd → C be “nice” functions. The convolution is a binary operation defined
by

f ∗ g(x) :=
∫
f(x− y)g(y) dy.

We can show f ∗ g = g ∗ f by change of variable.

The following theorem is not rigorous, but believe me:

Theorem
The δ function is the identity element with respect to convolution.

Pseudo-Proof.

δ ∗ f(x) =
∫
f(x− y)δ(y) dy = f(x− 0) = f(x).
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2.3. Properties

We will give three useful properties of Fourier transform.

Proposition (1)

Let f : Rd → C be a “nice” function. Then,

x̂f(ξ) = i∇ξ f̂(ξ), ∇̂xf(ξ) = iξf̂(ξ).

Proof.
x̂f(ξ) =

1
√
2π

d

∫
f(x)[xe−ix·ξ] dx

=
1

√
2π

d

∫
f(x)[i∇ξe

−ix·ξ] dx

=
1

√
2π

d
i∇ξ

∫
f(x)e−ix·ξ dx

= i∇ξ f̂(ξ)

The other is same.
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2.3. Properties

Proposition (2)

Let f, g : Rd → C be “nice” functions. Then,

1
√
2π

d
f̂ ∗ g = f̂ ĝ,

1
√
2π

d
f̂g = f̂ ∗ ĝ.

Proof.
f̂ ∗ g(ξ) =

1
√
2π

d

∫ [∫
f(x− y)g(y) dy

]
e−ix·ξ dx

=
1

√
2π

d

∫
g(y)

[∫
f(x− y)e−ix·ξ dx

]
dy

=
1

√
2π

d

∫
g(y)

[∫
f(x)e−i(x+y)·ξ dx

]
dy

=
1

√
2π

d

[∫
f(x)e−ix·ξ dx

] [∫
g(y)e−iy·ξ dy

]
=

√
2π

d
f̂(ξ)ĝ(ξ).

The other is from the inversion.
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2.3. Properties

Proposition (3)

Let f, g : Rd → C be “nice” functions.

∇x(f ∗ g) = (∇xf) ∗ g = f ∗ (∇xg).

Proof.
∇x(f ∗ g)(x) = ∇x

∫
f(x− y)g(y) dy

=

∫
[∇xf(x− y)]g(y) dy

= (∇xf) ∗ g(x).
The second equality is due to the commutativity.
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3.1. Fundamental solution

Consider our initial value problem:{
i∂tu(t, x) + ∆u(t, x) = 0, t > 0

u(0, x) = u0(x), t = 0.
(1)

We are going to assume the existence and uniquness of solutions.

Definition
The fundamental solution of this problem is the solution of{

i∂tK(t, x) + ∆K(t, x) = 0, t > 0

K(0, x) = δ(x), t = 0,
(2)

in which the initial data u0 is changed into δ.
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3.1. Fundamental solution

The purpose of finding K is the convolution K(t, x) ∗x u0(x) with respect to x is
the desired solution:

Theorem
Let K be the fundamental solution; the solution of (2). Then, the convolution
K(t, x) ∗ u0(x) in x-space is the solution of (1).

Proof.
[i∂t +∆](K ∗ u0) = ([i∂t +∆]K) ∗ u0 = 0 ∗ u0 = 0,

(K ∗ u0)(0, x) = K(0, x) ∗ u0(x) = δ(x) ∗ u0(x) = u0(x).

In physics, the kernel K is called propagator since its convolution with the initial
solution is same with the solution at specific time t.
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3.2. Computation of fundamental solution (1)

The basic idea is Fourier transform. By taking Fourier transform for (2){
i∂tK(t, x) + ∆K(t, x) = 0, t > 0

K(0, x) = δ(x), t = 0,

we have {
i∂tK̂ − |ξ|2K̂ = 0, t > 0

K̂(0, ξ) = δ̂(ξ), t = 0.

It is an ODE, so we can find the solution

K̂(t, ξ) = C(ξ)e−it|ξ|2 ,

where
C(ξ) = K̂(0, ξ) = δ̂(ξ) ≡

1
√
2π

d
.

Therefore,

K̂(t, ξ) =
1

√
2π

d
e−it|ξ|2 .

Note that this is the complex Gaussian, a very special function!
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3.2. Computation of fundamental solution (1)

With
K̂(t, ξ) =

1
√
2π

d
e−it|ξ|2 ,

differentiating before taking inverse transform,

∇ξK̂ = −2itξK̂.

By the inversion formula, we get the ODE

xK = −2it∇xK,

and its solution

K(t, x) = C(t)ei
|x|2
4t .

Here,

C(t) = K(t, 0) =
1

√
2π

d

∫
K̂(t, ξ)ei⃗0·ξ dξ =

1

(2π)d

∫
e−it|ξ|2 dξ.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is dispersion? Introduction to Fourier transform Method I: Representation formula Method II : Oscillatory integral

3.2. Computation of fundamental solution (2)

Since
C(t) =

1

(2π)d

∫
e−it|ξ|2 dξ

=
1

(2π)d

∫
· · ·

∫
e−it(ξ21+···+ξ2d) dξ1 · · · dξd

=

(
1

2π

∫
R
e−itξ2 dξ

)d

,

we obtain
C(t) =

1
√
4πit

d

by the following theorem:

Theorem

If we let
√
i = e

1
4
πi, then the complex Gaussian is∫

R
e−itξ2 dξ =

√
π

it
.
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3.2. Computation of fundamental solution (2)

Proof. By Cauchy’s integral theorem,

0 =

∫
γ
e−itz2 dz = I1 + I2 + I3 + I4,

where Ii :=
∫
γi
e−itz2 dz for i = 1, 2, 3, 4.

γ1

γ2
γ3

γ4

Then, the problem is to show

lim
R→∞

I1 =

√
π

it
.
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3.2. Computation of fundamental solution (3) - estimate of I3

Since
I3 =

∫
γ3

e−itz2 dz

=

∫
γ3

e−it(re
3
4
πi

)2 d(re
3
4
πi)

= e
3
4
πi

∫ R

−R
e−tr2 dr,

we have a limit
lim

R→∞
I3 = e

3
4
πi

√
π

t
= −

√
π

it
.
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3.2. Computation of fundamental solution (3) - estimate of I2 and I4

By change of variable, we have

I2 =

∫
γ2

e−it(Reiθ)2 d(Reiθ) =

∫ − 1
4
π

0
e−itR2ei2θRieiθ dθ

and
|I2| ≤

∫ π
4

0
Re−tR2 sin 2θ dθ.

We can do for |I4| similarly, so

|I2|+ |I4| ≤ 2

∫ π
4

0
Re−tR2 sin 2θ dθ =

∫ π
2

0
Re−tR2 sin θ dθ.
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3.2. Computation of fundamental solution (3) - estimate of I2 and I4

If we take δ = 2
π
R− 3

2 so that sin δ ≥ R− 3
2 , then∫ δ

0
Re−tR2 sin θ dθ ≤

∫ δ

0
Rdθ =

2

π

1
√
R

→ 0,∫ π
2

δ
Re−tR2 sin θ dθ =

∫ π
2

δ
Re−tR2 sin δ dθ ≤

π

2
Re−t

√
R → 0

as R → ∞; lim
R→∞

|I2|+ |I4| = 0.

Consequently, ∫
e−itξ2 dξ = lim

R→∞
I1 = − lim

R→∞
I3 =

√
π

it
,
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3.3. Representation formula

Therefore, we showed

Theorem
The fundamental solution of (1) is

K(t, x) =
1

√
4πit

d
ei

|x|2
4t ,

where
√
i = e

1
4
πi.
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3.3. Representation formula

Theorem
Let u be the solution of (1). Then,

u(t, x) =
1

√
4πit

d

∫
u0(y)e

i
|x−y|2

4t dy.

This kind of explicit formula of the solution is called representation formula.

Corollary

sup
x

|u(t, x)| ≤ (4πt)−
d
2

∫
|u0(x)| dx.
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4.1. Oscillatory integral

This method is applicable for more generalized cases, such as the Airy equation or
the fractional Schrödinger equation.

Note that
u(t, x) = K(t, x) ∗ u0(x).

By Hölder’s inequality,

∥u∥L∞
x

≤ ∥K(t,−)∥L∞
x
∥u0∥L1 .

We have seen that
K̂(t, ξ) =

1
√
2π

d
e−it|ξ|2 .

Fourier transforming,

K(t, x) =
1

(2π)d

∫
ei(x·ξ−t|ξ|2) dξ.

We can find this by Fourier transform of complex Gaussian, but we will use another
approach.
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4.1. Oscillatory integral

Define phase and amplitude by

ϕ(t, x, ξ) := x · ξ − t|ξ|2, a(ξ) :=
1

(2π)d
χ(ξ),

so that the limit (χ→ 1) of the following integral is the fundamental solution:

I(t, x) :=

∫
a(ξ)eiϕ dξ.

An integral of this form is called oscillatory integral.
We are going to obtain a pointwise estimate of this!⇒ Fix x.
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4.2. Principle of non-stationary phase

Where ∇ξϕ is big, the integral
∫
a(ξ)eiϕ dξ will be cancelled by oscillation.
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4.2. Principle of non-stationary phase

Definition
Let ϕ be the phase function defined previously. A stationary point is a point ξo(t, x)
at which ∇ξϕ vanishes.

For the Schrödinger equation, we have ξo = x
2t

. The strategy is to divide the
integral I as

I = Istat + Inonstat

We can control each integral by
Istat : base × height.
Inonstat : cancellation by fast oscillation.

The wider the region of stationary phase, the bigger Istat is.
The smaller the region of stationary phase, the bigger Inonstat is.

We should find the balance: in fact t− 1
2 is the boundary of the regions:

Istat ≃ (t−
1
2 )d × 1 = t−

d
2 .
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4.3. Heuristic method: Linearization of the phase

There is a nice heuristic method for finding the boundary
(, which we already know it is t− 1

2 ).

Let ξ′ = ξ − ξo be a new variable in the Fourier space.
Intuitively, the region of stationary phase is determined as

{ξ′ : |ϕ(ξ)− ϕ(ξo)| ≲ 2π}.

Since
2π ≳ |ϕ(ξ)− ϕ(ξo)|

≃ |Hessξo (ξ′, ξ′)|
≃ t|ξ′|2,

the region of stationary phase is |ξ′| ≲ t−
1
2 .
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4.4. Repeated integration by parts

So, the rest is to show |Inonstat| ≲ t−
d
2 , where

Inonstat =

∫
χ
|ξ|>t

− 1
2
(ξ)a(ξ)eiϕ dξ.

By the Taylor expansion

∇ξϕ =
1

2
Hessξo (ξ′) +O(|ξ|2) = tξ′ +O(|ξ|2),
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