
Diachrony of Spectra

Ikhan Choi

Postech - Unist - Kaist Joint Seminar

August 4, 2019



Introduction

Definition
Let R be a commutative ring. The spectrum of R is the set of prime
ideals of R.

Example

Spec(Z) = {{0}, 2Z, 3Z, 5Z, 7Z, 11Z, · · · }.

Question
Why is it defined like this?



Contents

Hydrogen atom

Spectral theory on Hilbert spaces

Gelfand theory

Algebraic geometry



Hydrogen spectral series

410.2nm 468.1nm 656.3 nm
434.0nm

Question
How can we explain and compute this phenomenon?
A: By the following formula!

1
λ
= R

( 1
n2

1
−

1
n2

2

)
, for n1,n2 ∈ N.



Rydberg’s formula (1): Bohr model

Bohr’s postulates:
▶ The electrons are on certian stable orbits.
▶ The stationary orbits are computed by the old quantization

assumption for angular momenta:

mvr = n h.

▶ An electron absorbs or emits light frequency f when they jump from
an orbit to another, satisfying

∆E = hf.

The constant h is called the Planck constant and  h := h
2π .



Rydberg’s formula (1): Bohr model

From the three relations

mvr = n h, mv2
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Proposition (Rydberg formula)
The wavelengths λ of absorbed or emitted photons from a hydrogen
atom is estimated by the following formula:
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)
, for n1,n2 ∈ N,

where R := k2e4m
4π h3c is the Rydberg constant.



Rydberg’s formula (2): Schrödinger equation

More mathematically!
In quantum mechanics, an electron around a hydrogen atom is described
by the Schrödinger equation: for (t, x) ∈ R1+3

i h
∂

∂t
Ψ(t, x) = −

 h2

2m∇
2Ψ(t, x) + V(x)Ψ(t, x),

energy kinetic energy potential energy

where V is given by the Coulomb potential

V(x) = −k
e2

|x|
.

By solving it, we obtain the probability distribution |Ψ(t, x)|2 of the
electron at time t, hence the assumption ∀t,

∫
|Ψ(t, x)|2 dx = 1 <∞.

Let’s solve.



Separation of variables and Eigenvalue problems

i h
∂Ψ(t, x)
∂t

= −
 h2

2m∇
2Ψ(t, x) + V(x)Ψ(t, x).

“Mathematization”:

i∂tΨ(t, x) = (−∆+ V(x))Ψ(t, x), V(x) = −
2
|x|

.

Ansatz: if the solutions has the form Ψ(t, x) = ϕ(t)ψ(x), then

i∂tϕ(t)

ϕ(t)
=

(−∆+ V(x))ψ(x)

ψ(x)
= E

for some constant E, which is interpreted as the energy of electron.
∴ We have two eigenvalue problems with shared eigenvalue E:

i
d

dt
ϕ(t) = Eϕ(t), (−∆+ V(x))ψ(x) = Eψ(x).

(Solutions may or may not exist according to E!)



Separation of variables and Eigenvalue problems

Suppose we already have found the solutions ϕE(t), ψE(x) of the
eigenvalue problems for each complex number E.
Here are some facts:
▶ Functions of the form Ψ(t, x) = ϕE(t)ψE(x) and linear combinations

of them are solutions of the original Schrödinger equation.
▶ It is known that all solutions are found in this way: general solution

of the original Schrödinger equation is given by

Ψ(t, x) =
∑
E

ϕE(t)ψE(x) or
∫
E

ϕE(t)ψE(x)dE.

▶ For a given E, ϕE and ψE are of course not unique. In fact they
form a vector space which is called the eigenspace.

▶ Note that for some E we probably cannot find the solution ψE(x)

that satisfies
∫
|ψE(x)|

2 dx = 1: the eigenspace is trivial.
▶ Since ϕE(t) ∝ e−iEt is easily solved, the main difficulty is ψE.



Separation of variables and Eigenvalue problems

So, here are what we need to investigate seriously: what are the
eigenvalues and eigenvectors of the linear operator

H : L2(R3)→ L2(R3)

defined by
Hψ(x) := (−∆− 2|x|−1)ψ(x)?

Also, how can we compute them?

⋆ ⋆ ⋆ The Beginning of Spectral Theory ⋆ ⋆⋆

Remark
Simply, L2(R3) is the space of f : R3 → R such that

∫
|f|2 <∞. In fact,

there are many technical issues to formalize this problem, for example, L2

function is in general not differentiable.
Don’t be so pedantic in doing physics.



Eigenvalues of hydrogen Hamiltonian

Anyway, with long long calculations and hard hard mathematics, experts
have found the following result:
Proposition
The eigenvalues of the operator H = −∆− 2|x|−1 are

−1,−1
4 ,−1

9 ,− 1
16 , · · ·

with multiplicity 1, 4, 9, 16 and so on.

▶ Eigenvalues embody the possible energies of an electron, so we can
give the Rydberg formula a reasonable explanation.

▶ This result explains not only the discretized energy spectrum but
also the number of orbitals in each electron shell!

▶ We call the set of eigenvalues by (discrete) spectrum of H.



Eigenvalues of hydrogen Hamiltonian

The simultaneous equation is solved when E = − 1
n2 for some n ∈ N:

i
d

dt
ϕ(t) = Eϕ(t), (−∆+ V(x))ψ(x) = Eψ(x).

General solution of the Schrödinger equation is like

Ψ(t, x) =
∞∑

n=1
ϕn(t)ψn(x)

=

∞∑
n=1

e
i 1
n2 t

 n2∑
i=1

cn,iψn,i(x)


=

∞∑
n=1

e
i 1
n2 t

n−1∑
l=0

l∑
m=−l

cnlm ψnlm(x).



Conclusion of Section 1

Partial Differential Equations with Time Evolution

Simultaneous Eigenvalue Problems

Study of Eigenvalues = Study of Hydrogen Spectrum

Separation of variables
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Spectral theory?

So far, we have seen that spectral theory refers to the theory about
eigenvalues and eigenvectors, especially often for INFINITE dimensional
linear operators.
In this section, we
▶ review the spectral theory on finite dimensional vector spaces,
▶ introduce Hilbert spaces — a typical example of infinite dimensional

vector spaces — to state some results which extend the spectral
theory to infinite dimensional spaces,

▶ and give a precise definition of “spectrum” of an operator.
From now, we basically assume the scalar field as C.



Spectral theorem for matrices
The term “spectral theorem” is given to several theorems that show a
condition for a linear operator to be diagonalizable.
(diagonalizability is the firstly considered “spectral property”!)
In particular, spectral theorems state the relation

condition related to adjoint ⇐⇒ a kind of diagonalizability.

Vector space
with inner product

Vector space
without additional structure

The most famous examples are for:
Definition
Let V be a finite dimensional complex inner product space and A : V → V

be linear. (i.e., let A be a complex square matrix.) Then, A is said to be
normal if AA∗ = A∗A, and Hermitian if A = A∗

Note that the conjugate transpose depends on the inner product
structure: A∗ is defined by

⟨x,Ay⟩ = ⟨A∗x,y⟩.



Spectral theorem of matrices

Theorem (Spectral theorem for normal matrices)
A complex square matrix A is normal if unitarily diagonalizable.

Theorem (Spectral theorem for Hermitian matrices)
A complex square matrix A is Hermitian if unitarily diagonalizable and all
eigenvalues are real.

TFAE: a matrix is/has
▶ unitarily diagonalizable
▶ a set of eigenvectors forms an orthonormal basis of V.

Remind what we did in the previous section. The purpose of separation
of variables is to construct an orthonormlal basis for the solution space.



Hilbert space

Definition
An inner product space, possibly infinite dimensional, is called a Hilbert
space if it is complete; the metric

d(x,y) :=
√
⟨x− y, x− y⟩

has the space become a complete metric space.

▶ The vector space Cn ⇔ Finite dimensional Hilbert space.
▶ The space L2(X) is a Hilbert space with ⟨f,g⟩ :=

∫
X
fg dx.

▶ Conversly, Hilbert space usually means the L2 space of wave
functions, by physicists.

▶ The space ℓ2(C) of sqare summable sequeces is a Hilbert space with
⟨(an), (bn)⟩ :=

∑
n anbn.



Bounded operators

Theorem (?)
In finite dimensions, something linear is always continuous.

▶ However, this may be wrong in infinite dimensions.
We should find linear operators of nicer properties to state the
generalized spectral theorem.

Definition
A linear operator T : H→ H on a Hilbert space is called bounded if there
is a constant C > 0 such that for all x ∈ H

∥Ax∥ ⩽ C∥x∥.

The set of bounded operators on H is denoted by B(H).

Theorem
A linear operator on a Hilbert space is bounded iff continuous.



Compact operators
Bounded operators are not enough.
Definition
A linear operator T on a Hilbert space is called compact if image of
bounded set is relatively compact.

Remark
The closed ball in infinite dimensional Hilbert space is not compact: we
can find a sequence not having any convergent subsequence.

Example
An operator T : ℓ2 → ℓ2 defined by

T(a1,a2,a3, · · · ) = (a1, a2
2 , a3

3 , · · · )

is compact, but the identity I→ ℓ2 → ℓ2

I(a1,a2,a3, · · · ) = (a1,a2,a3, · · · ),

which is clearly bounded, is not compact.



Spectral theorem for compact normal operators

Theorem (Spectral theorem for compact normal operators)
Let T be a compact normal operator on a separable Hilbert space. Then,
there exists a countable orthonormal basis consisting of eigenvectors,
with corresponding eigenvalues that converges to 0.

Theorem (Spectral theorem for compact self-adjoint operators)
Let T be a compact self-adjoint operator on a separable Hilbert space.
Then, there exists a countable orthonormal basis consisting of
eigenvectors, with corresponding eigenvalues that are reals and converges
to 0.

Remark
There are some concepts we will skip:
▶ we did not define “separable” space,
▶ we did not define “countable (Schauder) basis”.



Discrete spectrum

An application of spectral theorem:
The Hamiltonian operator for harmonic oscillator −∆+ |x|2 is an example
of what we call elliptic operators with discrete spectrum.
We will not deal with this in detail, but:

The operator −∆+ |x|2 is unbounded,

but it is known that we can view it as the
inverse of a compact self-adjoint(positive) operator.

↓
The eigenvalues are distributed like

0 < λ1 < λ2 < · · · →∞.

Hydrogen atom is more complicated: it has both discrete spectra {− 1
n2 }

and continuous spectra [0,∞). What is continuous spectrum?



Continuous spectrum

For hydrogen atom ⇒ we defined the discrete spectrum of Hamiltonian
H = −∆+ 2|x|−1 as the set of eigenvalues.

For a free particle ⇒H = −∆+ V = −∆, we cannot; eigenvectors exist
for E ⩾ 0, and they are “linear combinations” of

ψE(x) = e
ik·x, for k ∈ R3 s.t. |k|2 = E,

which are all not in L2.

However, their integral may serve as a solution:

Ψ(t, x) =
∫
E

e−iEt

∫
|k|=

√
E

aE(k)e
ik·x dkdE.

▶ Energy spectrum of free particle is not quantized = discretized.
▶ We want to say −∆ has the spectrum [0,∞).



Continuous spectrum

Definition
Let T be an operator on a Hilbert space H. The spectrum of T is defined
by

σ(T) := {λ ∈ C : T − λI is not invertible in B(H)}.

In particular,
Definition
The point spectrum of T is defined by the set of eigenvalues:

σp(T) := {λ ∈ C : T − λI is not injective }.

Definition
The continuous spectrum of T is defined by

σc(T) := {λ ∈ C : T − λI is injective but has proper dense image }.



Conclusion of Section 2

▶ In infinite dimensional spaces, the spectral theorems are generalized
for compact operators.

▶ The spectrum of an operator T is defined by

{λ ∈ C : T − λI is not invertiable }.
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C∗-algebras

The goal of this section is to state the Gelfand-Naimark theorem, which
crucially affects to the definition of Spec(R). We give definitions:
Psudo-definition
An algebra is a vector space with vector multiplication.
Equivalently, a ring with scalar multiplication.

Definition
A C∗-algebra is a complex associative algebra with involution ∗ and norm
∥ · ∥ such that the norm is complete and ∥x∗x∥ = ∥x∗∥∥x∥.

Example (1)
Let H be a complex Hilbert space. Then, B(H) is a C∗-algebra.
C∗-algerbras are invented to learn the abstract study of B(H).

Example (2)
Let X be a compact space. Then, the set of complex-valued continuous
functions C(X,C) is a commutative C∗-algebra.



Gelfand theory (1): continuous function space

Assumption: unless mentioned otherwise, we will only discuss
commutative unital C∗-algebras.
The following definition is natural:
Definition
Let A be (possibly non-commutative) C∗-algebra. A complex number λ is
in the spectrum of a ∈ A if a− λe is not invertible. The spectrum is
denoted by σ(a).

What can be told for a continuous function on a compact X? For C(X),
▶ σ(f) = im(f),
▶ every maximal ideal is of the form {f : f(x) = 0} for a single point
x ∈ X.



Gelfand theory (2): generated C∗-subalgebra

The following is also an important exmple to formulate functional
calculus:
Definition
Let A be a (possibly non-commutative) C∗-algebra. An element a ∈ A is
called normal if a∗a = aa∗. For a normal element, a C∗-subalgebra
defined by

C∗(a) := {p(a,a∗) : p ∈ C[x,y] } ⊂ A
is said to be generated by a.
Note that C∗(a) is commutative since a is normal! For C∗(a),
▶ if a− λ is not invertible, there we can assign a maximal ideal

containing it,
▶ conversely, for a maximal ideal m, the image of a under the

projection C∗(a)→ C∗(a)/m ∼= C is in a spectrum of a (∗),
▶ the maps above are inverses of each other.

Therefore,



Gelfand theory (2): generated C∗-subalgebra

Proposition
There is a 1-1 correspondence between

spectrum of a ⇐⇒ maximal ideal space of C∗(a).

Consider C(X). The above proposition states that image is corresponded
to its domain: the element a acts like an “injective function” in C∗(a).
Definition
Let us define the spectrum of general commutative unital C∗-algebra A
as the set of maximal ideals and denote it by σ(A).



Spectrum as a topological space
Let σ(A) be the spectrum of a comm. unit. C∗-algebra A.
We set up the topology of pointwise convergence on σ(A), by identifying
maximal ideals with the projections to C:
for example, consider C(X). Since X is naturally 1-1 corresponded to
σ(C(X)) as a set,

x→ y ∈ X ⇐⇒ f(x)→ f(y) for all f ∈ C(X).

Then,
Proposition
Let A be a comm. unit. C∗-algebra. Then, the spectrum σ(A) is
compact (by the Banach-Alaoglu).

Example
For the space ℓ1 of summable sequences, the spectrum is the unit circle:
σ(ℓ1) = T.

Example
Let X be compact Hausdorff. Then, σ(C(X)) is homeomorphic to X.



Gelfand-Naimark theorem

Finally, we state the Gelfand-Naimark theorem.
Theorem (Gelfand-Naimark, 1943)
Let A be a commutative unital C∗-algebra. Then, we have a C∗-algebra
isomorphism

A→ C(σ(A)).
This map is called Gelfand representation.



Conclusion of Section 3

Transitions of definition:
▶ Spectrum of a ∈ A → generalized eigenvalues;
▶ Spectrum of a ∈ C(X) → image of function;
▶ Spectrum of a ∈ C∗(a) → maximal ideals;

⇓
▶ Spectrum of C(X) := maximal ideals = domain = image of inj,
▶ Spectrum of A := maximal ideals (≈ domain(?)).

Spectrum ⇐⇒ {Maximal ideals} ⇐⇒ {Points}
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Algebraic geometry

In algebriac geometry, we...
▶ Want to describe geometry with polynomials:

The circle is described by the polynomial x2 + y2 − 1.
▶ Want to solve geometric problems with properties of polynomials:

for example,
▶ to compute the number of singularity,
▶ to determine the topological shape,
▶ to investigate the dimension of intersection, etc.

▶ Want to make a correspondence between geometry and algebra:
(→) use algebraic computations to analyze geometry,
(←) use the geometric intuition to study algebra.

In this section, assume that a “ring” is a commutative and unital one.



Algebraic variety

Remark
We give basic definitions here. For simplicity, we will do everything in the
three dimension C3. Every concept is directly generalized to arbitrary
dimensions.

Definition
Let T ⊂ C[x,y, z] and define

Z(T) := {p ∈ C3 : f(p) = 0 for all f ∈ T }.

An algebraic set is a subset V of Cn satisfying V = Z(T) for some T .

Definition
Let Y ⊂ Cn and define

I(Y) := {f ∈ C[x,y, z] : f(p) = 0 for all p ∈ Y}.

This is always a radical(square-free) ideal.



Algebraic variety

Proposition
▶ For an algebraic set V ⊂ C3, we have V(I(V)) = V.
▶ For a radical ideal I ⊂ C[x,y, z], we have I(V(I)) = I.

Definition
If an algebraic set is not a union of two proper algebraic subsets, then it
is called algebraic variety.

Proposition
An algebraic set V is an algebraic variety iff I(V) is prime.

algebraic sets ⇐⇒ radical ideals,

algebraic varieties ⇐⇒ prime ideals.



Coordinate ring

Consider an algebraic variety S2 = {x2 + y2 + z2 = 1}. The following two
functions are same on S2:

f = x+ 1, g = x+ x2 + y2 + z2.

In other words, f− g ∈ I(S2).
Definition
A coordinate ring or structure ring of an algebraic set V is the ring
C[x,y, z]/I(V).

Every ring of the form C[x,y, z]/I, where I is an ideal, we can interpret
the ring as the set of functions on the algebraic set V(I). Why do we
introduce this?
Main Philosophy of AG:

analyze the function space to study geometric objects!



Krull dimension
Let us see an example that shows the power of structure rings.

Equation Ideal Dimension
∅ ∅ 3
x = 1 (x− 1) 2 (plane)
x = 1, y = 2 (x− 1,y− 2) 1 (line)
x = 1, y = 2, z = 3, (x− 1,y− 2, z− 3) 0 (point)

Coordinate rings are

C[x,y, z], C[x,y, z]/(x− 1),
C[x,y, z]/(x− 1,y− 2), C[x,y, z]/(x− 1,y− 2, z− 3).

Definition
The Krull dimension of a ring R is the maximal length of chain of prime
ideals.
∴ The Krull dimension of coordinate ring is same with the “dimension” of
the corresponding algebraic sets.



Maximal ideal is a point

Second example.
Theorem
The ideal (x− a,y− b, z− c) is maximal in C[x,y, z].
Conversely,
Theorem (Weak Hilbert Nullstellensatz)
Every maximal ideal in C[x,y, z] has the form

(x− a,y− b, z− c).

This theorem implies that we have the following correspondence:

points ⇐⇒ maximal ideals.



Alexander Grothendieck

Alexander Grothendieck (1928 - 2014)
original major: functional analysis!!!

“Every ring should be recognized as the set of functions on a space.”

What space? Spectrum!



Problems of maximal ideals

First trial:
Definition
Let R be a ring. Define the spectrum of R as the set of maximal ideals.

But it had two problems:
1. The codomain is not unified;
2. We want the spectrum to have a functoriality.



Gelfand-Mazur theorem

Let m be a maximal ideal(=point) of the ring R. Then, codomian field of
functions at the point is characterized by the quotient R/m.
For C∗-algebras, we could just use the maximal ideals becuase the field
R/m is always isomorphic to C:
Theorem (Gelfand-Mazur)
A C∗-algebra that is a field, is isormophic to C.
However, when we are concerned with general ring R, we cannot
guarantee such results.
There are two choices about the codomain problem:

1. Restrict the condition for maximal ideals,
2. Compromise the unifies codomain.(v)



Functoriality

We want Spec : CRing→ Set to be a (contravariant) functor:
functoriality allows to define schemes and apply the powerful theory of
sheaves to AG. Under what definitions is a ring homomorphism R→ S

able to induce the map Spec(S)→ Spec(R)?
Example
Consider the ring homomorphism i : Z ↪→ Q. The most reasonable choice
of the naturally induced map is

Spec(Q)→ Spec(Z) : p 7→ i−1(p).

If Spec is defined to be the set of maximal ideals, then the functoriality is
not satisfied: (0) is maximal in Q, but i−1((0)) = (0) is not maximal in Q.

Proposition
Inverse image of prime ideal under a ring homomorphism is prime.



Conclusion

When Grothendieck transplanted the idea of spectrum from functional
analysis to algebraic geometry, the following definition comes up:
Definition
Let R be a ring. The spectrum of R is the set of prime ideals.
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