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Main result

In my master’s thesis, I solved a 50-year-old problem posed by Haagerup in his master’s
thesis and obtained the following theorem!

Theorem ([Cho25], arXiv:2501.16832)
Let A be a C∗-algebra, and F ∗ be a weakly∗ closed convex hereditary subset of A∗+.
Then, for any ω ∈ A∗+ \ F ∗, there exists a ∈ A+ such that

ω(a)> 1 and ω′(a)≤ 1 for all ω′ ∈ F ∗.

The original proof has been simplified thanks to N. Ozawa. The positivity condition
a ≥ 0 is the non-trivial point. Applying the idea used to prove the above theorem, I could
simplify the proof of the following.

Theorem ([Haa75])
For a subadditive weight ϕ on M , the followings are equivalent:
É ϕ is σ-lower semi-continuous.
É ϕ is given by the pointwise supremum of normal positive linear functionals.
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C∗-algebras and von Neumann algebras

We will always denote a C∗-algbera and a vN algebra by A and M respectively.
A vN (or W∗-) algebra can be defined as a C∗-algebra M that admits a predual M∗, which
is unique if it exists. The canonical weak∗ topology on M is conventionally called the
σ-weak topology, and normality usually means the σ-weak continuity. We focus on the
dual pairs (A, A∗) and (M , M∗) and their weak/weak∗ topologies. Note that for a convex
subset of A or M∗ it is norm closed iff it is weakly closed by the Hahn-Banach separation.
To see the measure theoretic analogues in today’s talk, the following notes would be
helpful to keep in mind.

Example (Commutative C∗-algebras)
A commutative A is ∗-isomorphic to C0(X ) for a locally compact Hausdorff space X .

The positive part of its dual A∗+ is given by the set of finite regular Borel measures on X .

Example (Commutative vN algebras)
A commutative M is ∗-isomorphic to L∞(X ,µ) for a localizable measure space (X ,µ).
The positive part of its predual M+

∗ is isomorphic to L1(X ,µ), which can be identified
with the set of finite measures on X absolutely continuous with respect to µ. Note that
every σ-finite measure is a localizable.
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Definitions on weights

Definition (Weights and subadditive weights)
A weight on A is a homogeneous additive functional ϕ : A+→ [0,∞].
A subadditive weight on A is a homogeneous subadditive functional ϕ : A+→ [0,∞].

Definition (Properties of weights)
For a weight ϕ on A, we say it is
(i) faithful if ϕ(a) = 0 implies a = 0 for a ∈ A+,

(ii) densely defined if ϕ−1([0,∞)) is norm dense in A+,

(iii) lower semi-continuous if ϕ−1([0,1]) is norm closed in A+.

For a weight ϕ on M , we say it is
(ii’) semi-finite if ϕ−1([0,∞)) is σ-weakly dense in M+,

(iii’) normal if ϕ−1([0, 1]) is σ-weakly closed in M+.

A positive linear functional gives rise to a weight. Normality can be regarded as the
generalization of the countable additivity of measures. Note that the σ-weak lower
semi-continuity can be understood as a restatement of the Fatou lemma.
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Motivating examples for weights

Example (Localizable measures)
A localizable measure µ is always a faithful semi-finite normal weight on L∞(µ). In fact,
every M admits a faithful semi-finite normal weight.

Example (Radon measures)
Densely defined lower semi-continuous weights on C0(X ) for a locally compact Hausdorff
X are exactly positive linear functionals on Cc(X ), and are exactly locally finite inner
regular Borel measures on X . Every densely defined subadditive weight on a unital A is
bounded, so there is A without a faithful densely defined lower semi-continuous weight.

Example (Gelfand-Naimark-Segal representations)
There is a one-to-one correspondence between weights on A and unitary equivalence
classes of semi-cyclic representations of A, which is defined as a representation
π : A→ B(H) equipped with a partially defined left A-linear map Λ : A→ H of dense range.
The corresponding weight ϕ on M is normal iff π is normal and Λ is σ-weakly closed.
A densely defined lower semi-continuous weight ϕ on A gives rise to a faithful semi-finite
normal weight on the σ-weak closure A′′ in the associated semi-cyclic representation to ϕ.
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Equivalent characterizations for normality of weights

Theorem ([Haa75])
For a weight ϕ on M , the followings are all equivalent.
(1) ϕ is completely additive for positive elements;

ϕ(
∑

i

x i) =
∑

i

ϕ(x i), x i ∈ M+.

(2) ϕ preserves directed suprema;

ϕ(sup
i

x i) = sup
i
ϕ(x i), x i ↑ sup

i
x i in M+.

(3) ϕ is σ-weakly lower semi-continuous;

ϕ(lim
i

x i)≤ lim inf
i
ϕ(x i), x i → lim

i
x i σ-weakly in M+.

(4) ϕ is given by the pointwise supremum of normal positive linear functionals;

ϕ(x) = sup
ω≤ϕ, ω∈M+∗

ω(x), x ∈ M+.

(4)⇒(3)⇒(2)⇒(1) are clear.
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First problem

Problem (1.10)
For a subadditive weight on M , is it σ-weakly lower semi-continuous if it preserves
directed suprema?

Haagerup proved (1)⇒(3) directly without an intermediate step (2). He proved first for
σ-finite vN algebras, and extended the result to general vN algebras.

Definition
A vN algebra is called σ-finite or countably decomposable if every orthogonal family of
non-zero projections is countable, or equivalently, it admits a faithful normal state.

Theorem ([Haa75])
For a weight on σ-finite M , (1)⇒(3) holds.
For a subadditive weight on general M , (1)⇒(3) holds if every restriction on σ-finite vN
subalgebras satisfies (1)⇒(3).
Therefore, for a weight on general M , (1)⇒(3) holds.

Thus, it is enough to solve the problem in the σ-finite case.
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Second problem

Problem (1.11)
For a weight on M , is it normal if it is normal on every commutative vN subalgebra?

Theorem ([Dix53])
For a positive linear functional ω on M , the followings are all equivalent.
(0) ω is completely additive for orthogonal projections.
(1) ω is completely additive for positive elements.
(2) ω preserves directed suprema.
(3) ω is σ-weakly continuous.

In particular, a (positive) linear functional on M is normal if it is normal on every
commutative vN subalgebra by (0)⇒(1), and it is used to prove some equivalent
characterizations for weak compactness in M∗.

Example
(0)⇒(1) is false for weights. Define a weight ϕ for x = (xn)n ∈ `∞(N)+ such that
ϕ(x) :=
∑

n xn if x ∈ cc(N) and ϕ(x) :=∞ otherwise. Then, it gives a counterexample.

Ikhan Choi (崔 瀷瀚) (The University of Tokyo) A solution to Haagerup’s problem on normal weights Seoul, July 2025 11 / 27



Weights Haagerup’s three problems Proofs (for those who are interested in)

Third problem

Problem (2.7)
Does the positive bipolar theorem hold for dual C∗-algerbas? See (d) in the below.

Definition
Let (E, E∗) be a dual pair of (directed partially) ordered real vector spaces such that E+

and E∗+ are mutually dual cones, i.e. E∗+ = {x∗ ∈ E : x∗(x)≥ 0 for x ∈ E}. For F ⊂ E+,
we say it is hereditary if 0≤ x ≤ y ∈ F implies x ∈ F , and its positive polar is the set

F r+ := (F r)+ = {x∗ ∈ E∗ : sup
x∈F

x∗(x)≤ 1}+ = {x∗ ∈ E∗+ : sup
x∈F

x∗(x)≤ 1}.

Theorem ((a)∼(c) in [Haa75], (d) in [Cho25])
Consider the ordered real dual pairs (M sa, M sa

∗ ) and (Asa, Asa∗) of self-adjoint parts.
(a) If F is a σ-weakly closed convex hereditary subset of M+, then F = F r+r+.

(b) If F∗ is a norm closed convex hereditary subset of M+
∗ , then F∗ = F r+r+

∗ .

(c) If F is a norm closed convex hereditary subset of A+, then F = F r+r+.

(d) If F ∗ is weakly∗ closed convex hereditary subset of A∗+, then F ∗ = (F ∗)r+r+.
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Corollaries of third problem

Corollary ([Haa75])
For a subadditive weight ϕ on M , (3)⇒(4) holds.
(3) ϕ is σ-lower semi-continuous.
(4) ϕ is given by the pointwise supremum of normal positive linear functionals.

Proof. Define

F := {x ∈ M+ : ϕ(x)≤ 1}, F∗ := {ω ∈ M+
∗ :ω≤ ϕ}.

Then, F∗ = F r+ by definition, and (4) is equivalent to F = F r+
∗ . Since F is σ-weakly closed

by the σ-weak lower semi-continuity of ϕ, and since F is clearly convex and hereditary by
definition of subadditive weights, so we are done by the part (a). �
Using (c) instead of (a), we can simplify the proof of the following theorem.

Corollary ([Com68])
A lower semi-continuous subadditive weight on A is given by the pointwise supremum of
positive linear functionals.
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Corollaries of third problem

Corollary
There are one-to-one correspondences






normal
subadditive

weights on M







↔







σ-weakly closed
convex hereditary

subsets of M+







↔







norm closed
convex hereditary

subsets of M+
∗







and










lower semi-
continuous
subadditive

weights on A











↔







norm closed
convex hereditary

subsets of A+







↔







weakly∗ closed
convex hereditary

subsets of A∗+






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Proof of (a)

Definition (Suppression by the one-parameter family of functional calculi)
For δ > 0, we define a function fδ : (−δ−1,∞)→ R such that

fδ(t) := t(1+δt)−1, t > −δ−1.

They are operator monotone, σ-strongly continuous, and has the semi-group property.

Proof sketch of (a) by Haagerup. Since

F r+ = F r ∩M+
∗ = F r ∩ (−M+)r = (F ∪−M+)r = (F −M+)r ,

F r+r+ = (F −M+)r r+ = (F −M+)+

by the usual real bipolar theorem, it suffices to show (F −M+)+ ⊂ F .

Heuristics. Let x ∈ (F −M+)+ with nets x i and yi such that x i → x σ-weakly in M and
x i ≤ yi ∈ F for all i. Observe that if x i were bounded by r > 0, then assuming x i → x
σ-strongly and fδ(yi)→ yδ σ-weakly for each 0< δ < r−1, we get

x i ≤ yi ∈ F, fδ(x i)≤ fδ(yi) ∈ F, 0≤ fδ(x)≤ yδ ∈ F, fδ(x) ∈ F, x ∈ F.

The boundedness of x i is neceesary to define fδ(x i) for δ independently of i.
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Proof of (a)

Question. How can we remove the boundedness condition of x i?

Solution. We use the Krein-Šmulian theorem. Define

G := {x ∈ M sa : for any sufficiently small δ > 0, fδ(x) ∈ F −M+}.

It is enough to show
F −M+ ⊂ G, G+ ⊂ F, G ⊂ G,

and the first two are clear. To apply the Krein-Šmulian theorem, fix r > 0 and let
Mr := {x ∈ M : ‖x‖ ≤ r}. The proof of the σ-weak closedness is divided into the two
steps: G ∩Mr is σ-strongly closed, G ∩Mr is convex. After proving these, G ⊂ G by the
Krein-Šmulian theorem. �
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Proof of (b)

Definition (Bounded commutant Radon-Nikodym derivatives)
Let ψ ∈ M+

∗ and let π : M → B(H) be associated cyclic representation to ψ with the
canonical cyclic vector Ω ∈ H. Then, we have a positive bounded linear map
θ : π(M)′→ M∗, which we call the RN map, defined such that

θ (h)(x) := 〈hπ(x)Ω,Ω〉, h ∈ π(M)′, x ∈ M .

If ω ∈ M∗ satisfies |ω(x)| ≤ψ(x) for all x ∈ M+, then θ−1(ω) is uniquely defined and
‖θ−1(ω)‖ ≤ 1, which has θ−1(ω) = dω/dψ when M is commutative.

Proof sketch of (b). It is enough to prove (F∗ −M+
∗ )
+ ⊂ F∗. Let ω ∈ (F∗ −M+

∗ )
+ with

sequences ωn and ϕn such that ωn→ω in norm of M∗ and ωn ≤ ϕn ∈ F∗ for all n. We
may assume ‖ωn −ω‖ ≤ 2−n for all n by passing to a subsequence. Define

ψ :=ω+
∑

n

[ωn −ω] +
∑

n

2−n ϕn

1+ ‖ϕn‖
∈ M+

∗ ,

and let θ : π(M)′→ M∗ be the RN map associated to ψ. Since −ψ≤ωn ≤ψ implies the
boundedness ‖θ−1(ωn)‖ ≤ 1 for all n, the weak convergence ωn→ω in M∗ implies the
convergence θ−1(ωn)→ θ−1(ω) in the weak operator topology of π(M)′.
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By the Mazur lemma, we can take a net ωi in the convex hull of ωn such that
θ−1(ωi)→ θ−1(ω) strongly in π(M)′, and the corresponding ϕi ∈ F ∗ can be defined such
that ωi ≤ ϕi for all i. (In fact, the net ωi can be taken to be a sequence because the
commutant is σ-finite by the existence of the separating vector, but it is not necessary in
here.) For each i and 0< δ < 1, define

ωδ := θ ( fδ(θ
−1(ω))), ωi,δ := θ ( fδ(θ

−1(ωi))), ϕi,δ := θ ( fδ(θ
−1(ϕi))).

Then, the strong convergence fδ(θ−1(ωi))→ fδ(θ−1(ω)) in π(M)′ implies ωi,δ→ωδ
weakly in M∗, and the strong convergence fδ(θ−1(ω))→ θ−1(ω) in π(M)′ implies
ωδ→ω weakly in M∗ as δ→ 0. If we define ϕδ := θ (limi fδ(θ−1(ϕi))) by taking a
subnet or a cofinal ultrafilter, then ϕi,δ→ ϕδ weakly in M∗. Since ωi ≤ ϕi and
0≤ ϕi,δ ≤ ϕi ∈ F∗, we get

ωi,δ ≤ ϕi,δ ∈ F∗, 0≤ωδ ≤ ϕδ ∈ F∗, ωδ ∈ F∗, ω ∈ F∗.

This completes the proof. �
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Strategies for (d)

Let ωi and ϕi be nets in A∗sa such that ωi →ω weakly∗ in A∗ and ωi ≤ ϕi ∈ F ∗ for all i.

Question 1. How can we choose the reference ψ for the Radon-Nikodym?

Solution 1. Take ψi dynamically depending on ωi.

Question 2. How can we commute the weak∗ limit of ωi and fδ without strong
topology?
Solution 2. Approximate fδ with affine functions by

t −δ
1
2 ≤ fδ(t)≤ t, |t| ≤ 2−1δ−

1
4 ,

(1+δ−1)t ≤ fδ(t)≤ t, 0≤ t ≤ 1.
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Proof of (d)

Proof of (d). It suffices to show (F ∗ − A∗+)+ ⊂ F ∗. Define

G∗ :=







ω ∈ A∗sa :
there is ψ ∈ A∗+, and there is ϕδ ∈ F ∗

for any sufficiently small δ > 0, such that
‖ψ‖ ≤ 1, ‖ϕδ‖ ≤ δ−1, and ω≤ ϕδ +δ

1
2ψ







.

It suffices to show F ∗ − A∗+ ⊂ G∗, G∗+ ⊂ F ∗, and G∗ ⊂ G∗.
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Proof of (d)

Step 1. Let ω ∈ F ∗ − A∗+. Take ϕ ∈ F ∗ such that ω≤ ϕ. Define, for δ > 0,

ψ :=
[ω]

1+ ‖ω‖
+

ϕ

(1+ ‖ω‖)(1+ ‖ϕ‖)
, ϕδ := θ ( fδ(θ

−1(ϕ))),

where θ is the RN map associated to ψ. The norm conditions ‖ψ‖ ≤ 1 and ‖ϕδ‖ ≤ δ−1

are easily checked. For sufficiently small δ > 0 such that ‖θ−1(ω)‖ ≤ 1+ ‖ω‖ ≤ 2−1δ−
1
4

and δ ≤ 1, we have

θ−1(ω)≤ fδ(θ
−1(ω)) +δ

1
2 ≤ fδ(θ

−1(ϕ)) +δ
1
2 ,

so ω≤ ϕδ +δ
1
2ψ and ω ∈ G∗.
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Proof of (d)

Step 2. Let ω ∈ G∗+. Take ψ ∈ A∗+ and ϕδ ∈ F ∗ such that ‖ψ‖ ≤ 1, ‖ϕδ‖ ≤ δ−1,

ω≤ ϕδ +δ
1
2ψ, for any sufficiently small δ > 0. Let ψδ :=ω+δϕ +ψ, and let θδ be the

associated RN map. For any fixed δ′ > 0, since 0≤ θ−1
δ
(ω)≤ 1, we have

0≤ (1+δ′)−1θ−1
δ
(ω)≤ fδ′(θ

−1
δ
(ω))≤ fδ′(θ

−1
δ
(ϕδ +δ

1
2ψ))

≤ fδ′(θ
−1
δ
(ϕδ) +δ

1
2 )≤ fδ′(θ

−1
δ
(ϕδ)) +δ

1
2 ,

and it implies
0≤ (1+δ′)−1ω≤ θδ( fδ′(θ−1

δ
(ϕδ))) +δ

1
2ψδ.

Since ‖ψδ‖ ≤ ‖ω‖+ 2 is bounded and θδ( fδ′(θ−1
δ
(ϕδ))) ∈ F ∗ is also bounded for fixed δ′

as δ→ 0, by considering the limit along a cofinal ultrafilter on the set of δ, we have
(1+δ′)−1ω ∈ F ∗, so δ′→ 0 gives ω ∈ F ∗.
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Proof of (d)

Step 3. To show G∗ is weakly∗ closed, we claim for any r > 0 that

(F ∗ − A∗+)∩ A∗2r ⊂ G∗, G∗ ∩ A∗r ⊂ (F ∗ − A∗+)∩ A∗2r ,

where A∗r := {ω ∈ A∗ : ‖ω‖ ≤ r}. If these are true, then

G∗ ∩ A∗r = (F ∗ − A∗+)∩ A∗2r ∩ A∗r

is weakly∗ closed and convex in A∗ for all r > 0, so the Krein-Šmulian theorem shows the
claim.
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Proof of (d)

Let ωi ∈ (F ∗ −A∗+)∩A∗2r be a net such that ωi →ω weakly∗ in A∗. Following the proof of
F ∗ − A∗+ ⊂ G∗, we can take ψi ∈ A∗+ and ϕi,δ ∈ F ∗ such that ‖ψi‖ ≤ 1, ‖ϕi,δ‖ ≤ δ−1,

ωi ≤ ϕi,δ +δ
1
2ψi, for uniformly sufficiently small δ such that 1+ 2r ≤ 2−1δ−

1
4 because

‖ωi‖ is bounded by 2r. Since the three conditions are preserved by the weak∗
convergence, taking the limit along a cofinal ultrafilter on the index set of i, we can
obtain limit points ψ and ϕδ so that ω ∈ G∗.

Let ω ∈ G∗ ∩ A∗r . Take ψ ∈ A∗+ and ϕδ ∈ F ∗ with ‖ψ‖ ≤ 1, ‖ϕδ‖ ≤ δ−1, ω≤ ϕδ +δ
1
2ψ,

for any sufficiently small δ > 0. If δ 1
2 < r, then ω−δ 1

2ψ ∈ (F ∗ − A∗+)∩ A∗2r converges to
ω weakly∗ in A∗ as δ→ 0, we have ω ∈ (F ∗ − A∗+)∩ A∗2r . �
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