A solution to Haagerup's problem on normal weights

Ikhan Choi

The University of Tokyo

Kyoto, September 2025

Main result

In my master's thesis, I solved a 50-year-old problem posed by Haagerup in his master's thesis and obtained the following theorem!

Theorem ([Cho25], arXiv:2501.16832)

Let A be a C^* -algebra, and F^* be a weakly* closed convex hereditary subset of A^{*+} . Then, for any $\omega' \in A^{*+} \setminus F^*$, there exists $\alpha \in A^+$ such that

$$\omega'(a) > 1$$
 and $\omega(a) \le 1$ for all $\omega \in F^*$.

The original proof has been simplified thanks to N. Ozawa.

I also simplified the solution of the Dixmier problem ([Dix53]) by Haagerup.

Theorem ([Haa75])

For a subadditive weight φ on M, the followings are equivalent:

- $ightharpoonup \varphi$ is σ -weakly lower semi-continuous.
- $\triangleright \varphi$ is a supremum of normal positive linear functionals.

Contents

- 1. Weights
- 2. Haagerup's three problem
- 3. Strategie
- 4. Proof (for those who are interested in

Definitions of weights

We will always denote C^* -algebras and vN algebras by A and M respectively.

Definition (Weights and subadditive weights)

A weight on A is a homogeneous additive functional $\varphi: A^+ \to [0, \infty]$, i.e.

$$\varphi(tx) = t\varphi(x), \qquad \varphi(x+y) = \varphi(x) + \varphi(y), \qquad t \ge 0, \ x, y \in A^+.$$

A subadditive weight on A is a homogeneous subadditive functional $\varphi: A^+ \to [0, \infty]$, i.e.

$$\varphi(tx) = t\varphi(x), \qquad \varphi(x+y) \le \varphi(x) + \varphi(y), \qquad t \ge 0, \ x, y \in A^+.$$

A subadditive (= s.a.) weight may not be a weight.

A positive linear functional is exactly a bounded (or finite) weight.

Properties of weights

Recall that a vN algebra is a C^* -algebra M with a (unique) predual M_* .

The weak* topology on M is conventionally called the σ -weak topology.

Definition (Properties of weights)

For a (s.a.) weight φ on A, we say it is

- (i) faithful if $\varphi(a) = 0$ implies a = 0 for $a \in A^+$,
- (ii) densely defined if $\varphi^{-1}([0,\infty))$ is norm dense in A^+ ,
- (iii) *lower semi-continuous* if $\varphi^{-1}([0,1])$ is norm closed in A^+ .

For a (s.a.) weight φ on M, we say it is

- (ii') semi-finite if $\varphi^{-1}([0,\infty))$ is σ -weakly dense in M^+ ,
- (iii') normal if $\varphi^{-1}([0,1])$ is σ -weakly closed in M^+ .

Normality can be regarded as the generalization of the countable additivity of measures, and the σ -weak lower semi-continuity can be understood as the Fatou lemma.

"norm dense" and "norm closed" can be replaced into "weakly dense" and "weakly closed".

Motivating examples for weights

Example (Localizable measures)

A localizable measure μ is always a f.s.n. weight on $L^{\infty}(\mu)$.

Every M admits a f.s.n. weight.

(A localizable measure space is intuitively a presentation of commutative vN algebra.)

Example (Radon measures)

For a locally compact Hausdorff X, there are natural 1-1 correspondences among

- ▶ d.l. weights on $C_0(X)$,
- **positive linear functionals on** $C_c(X)$,
- ▶ locally finite inner regular Borel measures on X.

There is A without a f.d.l. weight.

(Every densely defined s.a. weight on a unital A is bounded.)

Gelfand-Naimark-Segal representations

Since a bounded weight $\omega \in A^{*+}$ defines a sesqui-linear form on A, by "separation and completion" we obtain a Hilbert space H, as in the contruction of L^2 .

Then, we naturally have $\pi: A \to B(H)$ with a canonical vector $\Omega \in H$ such that $\overline{A\Omega} = H$.

Example

For a finite Radon measure $\mu \in C_0(X)^{*+}$, the associated GNS representation is the multiplication $C_0(X) \to B(L^2(\mu))$, and the cyclic vector Ω is the constant unit function.

Weights smoothly generalize this construction to the "unbounded measures".

Example (Semi-cyclic representations)

A semi-cyclic representations of A is a representation $\pi: A \to B(H)$ with a partially defined left A-linear map $\Lambda: A \to H$ of dense range.

There is a 1-1 correspondence between weights on A and unitary equivalence classes of semi-cyclic representations of A. (If a weight is bounded, $\Lambda(a) := a\Omega$.)

Equivalent characterizations for normality of weights

Theorem ([Haa75], Dixmier's problem on normal weights)

For a weight φ on M, the followings are all equivalent. $(4)\Rightarrow(3)\Rightarrow(2)\Rightarrow(1)$ are clear.

(1) φ is completely additive for positive elements;

$$\varphi(\sum_{i} x_i) = \sum_{i} \varphi(x_i), \qquad x_i \in M^+.$$

(2) φ preserves directed suprema;

$$\varphi(\sup_{i} x_{i}) = \sup_{i} \varphi(x_{i}), \qquad x_{i} \uparrow \sup_{i} x_{i} \text{ in } M^{+}.$$

(3) φ is σ -weakly lower semi-continuous;

$$\varphi(\lim_i x_i) \leq \liminf_i \varphi(x_i), \qquad x_i \to \lim_i x_i \text{ σ-weakly in M^+}.$$

(4) φ is a supremum of normal positive linear functionals;

$$\varphi(x) = \sup_{\omega \le \varphi, \ \omega \in M_*^+} \omega(x), \qquad x \in M^+.$$

Contents

Weights

- 1. Weights
- 2. Haagerup's three problems
- 3. Strategie
- 4. Proof (for those who are interested in)

First problem

Problem (1.10 in [Haa75])

For a s.a. weight on M, if it preserves directed suprema (2), then is it σ -weakly lower semi-continuous (3)?

Haagerup proved $(1)\Rightarrow(3)$ for weights in the first half of [Haa75].

He proved first for σ -finite M, and extended to general M.

(M is called σ -finite or countably decomposable if it admits a faithful normal state.)

Theorem ([Haa75])

For a s.a. weight on general M, $(1)\Rightarrow(3)$ holds if

(1)⇒(3) holds on σ -finite vN subalgebras.

For a weight on σ -finite M, $(1)\Rightarrow(3)$ holds.

Thus, it is enough to solve the problem in the σ -finite case.

Second problem

Problem (1.11 in [Haa75])

For a weight on M, is it normal if it is normal on every commutative vN subalgebra?

Theorem ([Dix53])

For $\omega \in M^{*+}$, the followings are all equivalent.

- (-1) ω is completely additive for orthogonal projections.
- (0) ω is completely additive for positive elements on commutative vN subalgebras.
- (1) ω is completely additive for positive elements.
- (2) ω preserves directed suprema.
- (3) ω is σ -weakly continuous.
- $(3)\Rightarrow(2)\Rightarrow(1)\Rightarrow(0)\Rightarrow(-1)$ are clear also for unbounded weights.
- $(-1)\Rightarrow(0)$ is false for unbounded weights. The question asks if $(0)\Rightarrow(1)$ holds.

Third problem

Problem (2.7 in [Haa75])

Does the positive bipolar theorem hold for dual C^* -algerbas? See (d) in the next slide.

This problem is related to the proof of $(3)\Rightarrow(4)$. We need some definitions to discuss.

Definition (Hereditary subsets and positive polars)

Let (E, E^*) be a dual pair of (directed partially) ordered real vector spaces such that E^+ and E^{*+} are mutually dual cones, i.e. $E^{*+} = \{x^* \in E : x^*(x) \ge 0 \text{ for } x \in E\}$.

For $F \subset E^+$, we say it is *hereditary* if $0 \le x \le y \in F$ implies $x \in F$,

and its positive polar is the positive part of the real polar

$$F^{r+} := (F^r)^+ = \{x^* \in E^* : \sup_{x \in F} x^*(x) \le 1\}^+ = \{x^* \in E^{*+} : \sup_{x \in F} x^*(x) \le 1\}.$$

Example (Hereditary C*-subalgebras)

A C*-subalgebra B of A is called *hereditary* if B^+ is hereditary in A^+ .

Third problem

We focus on the real dual pairs (A^{sa}, A^{*sa}) and (M^{sa}, M_*^{sa}) with weak/weak* topologies.

Theorem ((a) \sim (c) in [Haa75], (d) in [Cho25])

Consider the ordered real dual pairs (M^{sa}, M^{sa}_*) and (A^{sa}, A^{*sa}) of self-adjoint parts.

- (a) If F is a σ -weakly closed convex hereditary subset of M^+ , then $F = F^{r+r+}$.
- (b) If F_* is a norm closed convex hereditary subset of M_*^+ , then $F_* = F_*^{r+r+}$.
- (c) If F is a norm closed convex hereditary subset of A^+ , then $F = F^{r+r+}$.
- (d) If F^* is weakly* closed convex hereditary subset of A^{*+} , then $F^* = (F^*)^{r+r+}$.

They can be written in the form of Hahn-Banach separation, as written at the beginning. I proved (d) and simplified the proofs of (a) \sim (c).

Corollaries of third problem

Corollary ([Haa75])

For a s.a. weight φ on M, (3) \Rightarrow (4) holds.

- (3) φ is σ -weakly lower semi-continuous.
- (4) φ is a supremum of normal positive linear functionals.

Proof. Let

$$F := \{ x \in M^+ : \varphi(x) \le 1 \}, \qquad F_* := \{ \omega \in M_*^+ : \omega \le \varphi \}.$$

Then, $F_* = F^{r+}$ by definition, and (4) is equivalent to $F = F_*^{r+}$.

F is convex and hereditary by definition of s.a. weights, and σ -weakly closed by (3).

So we are done by (a).

Using (c) instead of (a), we can simplify the proof of the following theorem.

Corollary ([Com68])

A lower semi-continuous s.a. weight on A is a supremum of positive linear functionals.

П

Corollaries of third problem

Corollary ([Cho25])

There are 1-1 correspondences

$$\left\{\begin{array}{c} \textit{normal} \\ \textit{subadditive} \\ \textit{weights on } \textit{M} \end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{c} \sigma\textit{-weakly closed} \\ \textit{convex hereditary} \\ \textit{subsets of } \textit{M}^+ \end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{c} \textit{norm closed} \\ \textit{convex hereditary} \\ \textit{subsets of } \textit{M}^+_* \end{array}\right\}$$

and

$$\left\{ \begin{array}{c} \textit{lower semi-} \\ \textit{continuous} \\ \textit{subadditive} \\ \textit{weights on } A \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \textit{norm closed} \\ \textit{convex hereditary} \\ \textit{subsets of } A^+ \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \textit{weakly* closed} \\ \textit{convex hereditary} \\ \textit{subsets of } A^{*+} \end{array} \right\}$$

Weights

Contents

- 1. Weight:
- 2. Haagerup's three problems
- 3. Strategies
- 4. Proof (for those who are interested in)

Idea of (a)

To motivate the ideas, we sketch (a) and (b). Here are some preparations for (a).

Definition (Suppression by the one-parameter family of functional calculi)

For $\delta > 0$, we define a function $f_{\delta} : (-\delta^{-1}, \infty) \to \mathbb{R}$ such that

$$f_{\delta}(t) := t(1 + \delta t)^{-1}, \qquad t > -\delta^{-1}.$$

Its graph is a concave hyperbola which approaches to the identity as $\delta \to 0$.

They are operator monotone, σ -strongly continuous, and has the semi-group property.

The domain issue $t > \delta^{-1}$ is highly critical.

Theorem (Krein-Šmulian theorem)

Let E be a Banach space, and let F^* be a convex subset of E^* .

Then, F^* is weakly* closed if $F^* \cap E_r^*$ is weakly* closed for all r > 0, where

$$E_{\cdot\cdot}^* := \{x^* \in E^* : ||x^*|| \le r\}.$$

Idea of (a)

Proof sketch of (a) by Haagerup. Since

$$F^{r+} = F^r \cap M_*^+ = F^r \cap (-M^+)^r = (F \cup -M^+)^r = (F - M^+)^r,$$

$$F^{r+r+} = (F - M^+)^{rr+} = (\overline{F - M^+})^+$$

by the usual real bipolar theorem, it suffices to solve the inclusion problem $(F - M^+)^+ \subset F$.

Heuristics. Let $x \in (\overline{F-M^+})^+$. Then, we have nets $x_i, y_i \in M^{sa}$ such that

$$x_i \to x \ \sigma$$
-weakly in M , $x_i \le y_i \in F$.

If x_i were bounded by r > 0, then for each $0 < \delta < r^{-1}$ we can define $f_{\delta}(x_i)$.

Then, (assuming $x_i \to x$ σ -strongly by the Mazur and $f_{\delta}(y_i) \to y_{\delta}$ σ -weakly by the Alaoglu) we get from $x_i \leq y_i \in F$

$$f_{\delta}(x_i) \le f_{\delta}(y_i) \in F \quad \Rightarrow \quad 0 \le f_{\delta}(x) \le f_{\delta}(y) \le y_{\delta} \in F \quad \Rightarrow \quad f_{\delta}(x) \in F \quad \Rightarrow \quad x \in F.$$

Idea of (a)

Question. How can we remove the boundedness assumption of x_i ?

Solution. Use the Krein-Šmulian theorem. Define

$$G := \{x \in M^{sa} : \text{for any sufficiently small } \delta > 0, f_{\delta}(x) \in F - M^{+}\}.$$

It is enough to show

$$F - M^+ \subset G$$
, $G^+ \subset F$, $\overline{G} \subset G$,

and the first two are clear.

The weak* closedness of G can be shown by the Krein-Šmulian theorem.

Idea of (b)

To consider functional calculi of linear functionals, we introduce the following. It transforms linear functionals to operators in the commutant for suitble representations.

Definition (Bounded commutant Radon-Nikodym derivatives)

Let $(\pi: M \to B(H), \ \Omega \in H)$ be the GNS representation of $\psi \in M_*^+$.

Then, there is a positive bounded linear map $\theta=\theta_{\psi}:\pi(M)'\to M_*$ defined such that

$$\theta(h)(x) := \langle h\pi(x)\Omega, \Omega \rangle, \qquad h \in \pi(M)', \ x \in M.$$

We will call this the RN map of ψ . (It is not a standard terminology.)

If $\omega \in M_*$ is dominated by ψ in the sense that $|\omega(x)| \leq \psi(x)$ for all $x \in M^+$, then ω is in the image of θ and $\theta^{-1}(\omega)$ is uniquely defined with $\|\theta^{-1}(\omega)\| \leq 1$. In this case, we have $\theta^{-1}(\omega) = d\omega/d\psi$ when M is commutative.

Idea of (b)

Proof sketch of (b). It is enough to prove $(\overline{F_*-M_*^+})^+ \subset F_*$. Let $\omega \in (\overline{F_*-M_*^+})^+$ with sequences $\omega_n, \varphi_n \in M_*^{sa}$ such that

$$\omega_n \to \omega$$
 in norm of M_* , $\omega_n \le \varphi_n \in F_*$.

We may assume $\|\omega_n - \omega\| \le 2^{-n}$ for all n by passing to a subsequence. Define

$$\psi := \omega + \sum_n [\omega_n - \omega] + \sum_n 2^{-n} \frac{\varphi_n}{1 + \|\varphi_n\|} \in M_*^+.$$

Let $\theta:\pi(M)'\to M_*$ be the RN map associated to ψ . Then, we can define

$$\omega_{\delta} := \theta(f_{\delta}(\theta^{-1}(\omega))), \qquad \omega_{n,\delta} := \theta(f_{\delta}(\theta^{-1}(\omega_n))), \qquad \varphi_{n,\delta} := \theta(f_{\delta}(\theta^{-1}(\varphi_n)))$$

and prove $\omega \in F_*$ as in the proof of (a).

Strategies for (d)

To prove (d), let $\omega \in (\overline{F^* - A^{*+}})^+$, and take nets $\omega_i, \varphi_i \in A^{*sa}$ such that

$$\omega_i \to \omega \text{ weakly* in } A^*, \qquad \omega_i \le \varphi_i \in F^*.$$

Question 1. How can we choose the reference ψ for the Radon-Nikodym?

Solution 1. Take ψ_i dynamically depending on ω_i .

Question 2. How can we commute the weak* limit of ω_i and f_{δ} without strong topology? **Solution 2.** Approximate f_{δ} with affine functions by

$$t - \delta^{\frac{1}{2}} \le f_{\delta}(t) \le t, \qquad |t| \le 2^{-1} \delta^{-\frac{1}{4}},$$

$$(1+\delta^{-1})t \le f_{\delta}(t) \le t, \qquad 0 \le t \le 1.$$

These ideas can be also used to simplify the proof of (a).

Contents

Weights

- 1. Weights
- 2. Haagerup's three problem
- 3. Strategie
- 4. Proof (for those who are interested in)

Proof of (d). It suffices to show $(\overline{F^* - A^{*+}})^+ \subset F^*$. Define

$$G^* := \left\{ \begin{array}{c} \text{there is } \psi \in A^{*+}, \text{ and there is } \varphi_\delta \in F^* \\ \omega \in A^{*sa} : \text{ for any sufficiently small } \delta > 0, \text{ such that } \\ \|\psi\| \leq 1, \ \|\varphi_\delta\| \leq \delta^{-1}, \text{ and } \omega \leq \varphi_\delta + \delta^{\frac{1}{2}}\psi \end{array} \right\}.$$

It suffices to show $F^* - A^{*+} \subset G^*$, $G^{*+} \subset F^*$, and $\overline{G^*} \subset G^*$.

Step 1. Let $\omega \in F^* - A^{*+}$. Take $\varphi \in F^*$ such that $\omega \leq \varphi$. Define, for $\delta > 0$,

$$\psi := \frac{[\omega]}{1 + \|\omega\|} + \frac{\varphi}{(1 + \|\omega\|)(1 + \|\varphi\|)}, \qquad \varphi_{\delta} := \theta(f_{\delta}(\theta^{-1}(\varphi))),$$

where θ is the RN map associated to ψ . The norm conditions $\|\psi\| \le 1$ and $\|\varphi_\delta\| \le \delta^{-1}$ are easily checked. For sufficiently small $\delta > 0$ such that $\|\theta^{-1}(\omega)\| \le 1 + \|\omega\| \le 2^{-1}\delta^{-\frac{1}{4}}$ and $\delta < 1$, we have

$$\theta^{-1}(\omega) \leq f_{\delta}(\theta^{-1}(\omega)) + \delta^{\frac{1}{2}} \leq f_{\delta}(\theta^{-1}(\varphi)) + \delta^{\frac{1}{2}},$$

so $\omega \leq \varphi_{\delta} + \delta^{\frac{1}{2}} \psi$ and $\omega \in G^*$.

Step 2. Let $\omega \in G^{*+}$. Take $\psi \in A^{*+}$ and $\varphi_{\delta} \in F^{*}$ such that $\|\psi\| \leq 1$, $\|\varphi_{\delta}\| \leq \delta^{-1}$, $\omega \leq \varphi_{\delta} + \delta^{\frac{1}{2}}\psi$, for any sufficiently small $\delta > 0$. Let $\psi_{\delta} := \omega + \delta \varphi + \psi$, and let θ_{δ} be the associated RN map. For any fixed $\delta' > 0$, since $0 \leq \theta_{\delta}^{-1}(\omega) \leq 1$, we have

$$0 \leq (1+\delta')^{-1}\theta_{\delta}^{-1}(\omega) \leq f_{\delta'}(\theta_{\delta}^{-1}(\omega)) \leq f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta} + \delta^{\frac{1}{2}}\psi))$$

$$\leq f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta}) + \delta^{\frac{1}{2}}) \leq f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta})) + \delta^{\frac{1}{2}},$$

and it implies

$$0 \leq (1+\delta')^{-1}\omega \leq \theta_{\delta}(f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta}))) + \delta^{\frac{1}{2}}\psi_{\delta}.$$

Since $\|\psi_{\delta}\| \leq \|\omega\| + 2$ is bounded and $\theta_{\delta}(f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta}))) \in F^*$ is also bounded for fixed δ' as $\delta \to 0$, by considering the limit along a cofinal ultrafilter on the set of δ , we have $(1 + \delta')^{-1}\omega \in F^*$, so $\delta' \to 0$ gives $\omega \in F^*$.

Step 3. To show G^* is weakly* closed, we claim for any r > 0 that

$$\overline{(F^*-A^{*+})\cap A_{2r}^*}\subset G^*, \qquad G^*\cap A_r^*\subset \overline{(F^*-A^{*+})\cap A_{2r}^*},$$

where $A_r^* := \{ \omega \in A^* : ||\omega|| \le r \}$. If these are true, then

$$G^* \cap A_r^* = \overline{(F^* - A^{*+}) \cap A_{2r}^*} \cap A_r^*$$

is weakly* closed and convex in A^* for all r > 0, so the Krein-Šmulian theorem shows the claim.

Let $\omega_i \in (F^*-A^{*+}) \cap A_{2r}^*$ be a net such that $\omega_i \to \omega$ weakly* in A^* . Following the proof of $F^*-A^{*+} \subset G^*$, we can take $\psi_i \in A^{*+}$ and $\varphi_{i,\delta} \in F^*$ such that $\|\psi_i\| \le 1$, $\|\varphi_{i,\delta}\| \le \delta^{-1}$, $\omega_i \le \varphi_{i,\delta} + \delta^{\frac{1}{2}} \psi_i$, for uniformly sufficiently small δ such that $1+2r \le 2^{-1}\delta^{-\frac{1}{4}}$ because $\|\omega_i\|$ is bounded by 2r. Since the three conditions are preserved by the weak* convergence, taking the limit along a cofinal ultrafilter on the index set of i, we can obtain limit points ψ and φ_δ so that $\omega \in G^*$.

Let $\omega \in G^* \cap A_r^*$. Take $\psi \in A^{*+}$ and $\varphi_\delta \in F^*$ with $\|\psi\| \le 1$, $\|\varphi_\delta\| \le \delta^{-1}$, $\omega \le \varphi_\delta + \delta^{\frac{1}{2}} \psi$, for any sufficiently small $\delta > 0$. If $\delta^{\frac{1}{2}} < r$, then $\omega - \delta^{\frac{1}{2}} \psi \in (F^* - A^{*+}) \cap A_{2r}^*$ converges to ω weakly* in A^* as $\delta \to 0$, we have $\omega \in \overline{(F^* - A^{*+}) \cap A_{2r}^*}$.

References I

- [Cho25] Ikhan Choi. A solution to Haagerup's problem and positive Hahn-Banach separation theorems in operator algebras, 2025. arXiv 2501.16832.
- [Com68] François Combes. Poids sur une C*-algèbre. J. Math. Pures Appl. (9), 47:57–100, 1968.
- [Dix53] J. Dixmier. Formes linéaires sur un anneau d'opérateurs. Bull. Soc. Math. France, 81:9–39, 1953.
- [Haa75] Uffe Haagerup. Normal weights on W*-algebras. J. Functional Analysis, 19:302–317, 1975.
- [Tak02] M. Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5.
- [Tho24] Klaus Erik Thomsen. An introduction to KMS weights, volume 2362 of Lecture Notes in Mathematics. Springer, Cham, [2024] ©2024.