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Main result

In my master’s thesis, I solved a 50-year-old problem posed by Haagerup in his master’s
thesis and obtained the following theorem!

Theorem ([Cho25], arXiv:2501.16832)

Let A be a C∗-algebra, and F ∗ be a weakly∗ closed convex hereditary subset of A∗+.
Then, for any ω′ ∈ A∗+ \ F ∗, there exists a ∈ A+ such that

ω′(a)> 1 and ω(a)≤ 1 for all ω ∈ F ∗.

The original proof has been simplified thanks to N. Ozawa.
I also simplified the solution of the Dixmier problem ([Dix53]) by Haagerup.

Theorem ([Haa75])

For a subadditive weight ϕ on M , the followings are equivalent:

É ϕ is σ-weakly lower semi-continuous.

É ϕ is a supremum of normal positive linear functionals.
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Definitions of weights

We will always denote C∗-algebras and vN algebras by A and M respectively.

Definition (Weights and subadditive weights)

A weight on A is a homogeneous additive functional ϕ : A+→ [0,∞], i.e.

ϕ(t x) = tϕ(x), ϕ(x + y) = ϕ(x) +ϕ(y), t ≥ 0, x , y ∈ A+.

A subadditive weight on A is a homogeneous subadditive functional ϕ : A+→ [0,∞], i.e.

ϕ(t x) = tϕ(x), ϕ(x + y)≤ ϕ(x) +ϕ(y), t ≥ 0, x , y ∈ A+.

A subadditive (= s.a.) weight may not be a weight.
A positive linear functional is exactly a bounded (or finite) weight.
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Properties of weights

Recall that a vN algebra is a C∗-algebra M with a (unique) predual M∗.
The weak∗ topology on M is conventionally called the σ-weak topology.

Definition (Properties of weights)
For a (s.a.) weight ϕ on A, we say it is

(i) faithful if ϕ(a) = 0 implies a = 0 for a ∈ A+,

(ii) densely defined if ϕ−1([0,∞)) is norm dense in A+,

(iii) lower semi-continuous if ϕ−1([0,1]) is norm closed in A+.

For a (s.a.) weight ϕ on M , we say it is

(ii’) semi-finite if ϕ−1([0,∞)) is σ-weakly dense in M+,

(iii’) normal if ϕ−1([0, 1]) is σ-weakly closed in M+.

Normality can be regarded as the generalization of the countable additivity of measures,
and the σ-weak lower semi-continuity can be understood as the Fatou lemma.
“norm dense” and “norm closed” can be replaced into “weakly dense” and “weakly closed”.
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Motivating examples for weights

Example (Localizable measures)
A localizable measure µ is always a f.s.n. weight on L∞(µ).
Every M admits a f.s.n. weight.
(A localizable measure space is intuitively a presentation of commutative vN algebra.)

Example (Radon measures)
For a locally compact Hausdorff X , there are natural 1-1 correspondences among

É d.l. weights on C0(X ),

É positive linear functionals on Cc(X ),

É locally finite inner regular Borel measures on X .

There is A without a f.d.l. weight.
(Every densely defined s.a. weight on a unital A is bounded.)
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Gelfand-Naimark-Segal representations

Since a bounded weight ω ∈ A∗+ defines a sesqui-linear form on A, by “separation and
completion” we obtain a Hilbert space H, as in the contruction of L2.
Then, we naturally have π : A→ B(H) with a canonical vector Ω ∈ H such that AΩ= H.

Example
For a finite Radon measure µ ∈ C0(X )∗+, the associated GNS representation is the
multiplication C0(X )→ B(L2(µ)), and the cyclic vector Ω is the constant unit function.

Weights smoothly generalize this construction to the “unbounded measures”.

Example (Semi-cyclic representations)

A semi-cyclic representations of A is a representation π : A→ B(H) with a partially
defined left A-linear map Λ : A→ H of dense range.
There is a 1-1 correspondence between weights on A and unitary equivalence classes of
semi-cyclic representations of A. (If a weight is bounded, Λ(a) := aΩ.)
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Equivalent characterizations for normality of weights

Theorem ([Haa75], Dixmier’s problem on normal weights)

For a weight ϕ on M , the followings are all equivalent. (4)⇒(3)⇒(2)⇒(1) are clear.
(1) ϕ is completely additive for positive elements;

ϕ(
∑

i

x i) =
∑

i

ϕ(x i), x i ∈ M+.

(2) ϕ preserves directed suprema;

ϕ(sup
i

x i) = sup
i
ϕ(x i), x i ↑ sup

i
x i in M+.

(3) ϕ is σ-weakly lower semi-continuous;

ϕ(lim
i

x i)≤ lim inf
i
ϕ(x i), x i → lim

i
x i σ-weakly in M+.

(4) ϕ is a supremum of normal positive linear functionals;

ϕ(x) = sup
ω≤ϕ, ω∈M+∗

ω(x), x ∈ M+.
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First problem

Problem (1.10 in [Haa75])

For a s.a. weight on M , if it preserves directed suprema (2), then is it σ-weakly lower
semi-continuous (3)?

Haagerup proved (1)⇒(3) for weights in the first half of [Haa75].
He proved first for σ-finite M , and extended to general M .
(M is called σ-finite or countably decomposable if it admits a faithful normal state.)

Theorem ([Haa75])

For a s.a. weight on general M , (1)⇒(3) holds if
(1)⇒(3) holds on σ-finite vN subalgebras.

For a weight on σ-finite M , (1)⇒(3) holds.

Thus, it is enough to solve the problem in the σ-finite case.
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Second problem

Problem (1.11 in [Haa75])

For a weight on M , is it normal if it is normal on every commutative vN subalgebra?

Theorem ([Dix53])

For ω ∈ M ∗+, the followings are all equivalent.

(-1) ω is completely additive for orthogonal projections.

(0) ω is completely additive for positive elements on commutative vN subalgebras.

(1) ω is completely additive for positive elements.

(2) ω preserves directed suprema.

(3) ω is σ-weakly continuous.

(3)⇒(2)⇒(1)⇒(0)⇒(-1) are clear also for unbounded weights.
(-1)⇒(0) is false for unbounded weights. The question asks if (0)⇒(1) holds.
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Third problem

Problem (2.7 in [Haa75])

Does the positive bipolar theorem hold for dual C∗-algerbas? See (d) in the next slide.

This problem is related to the proof of (3)⇒(4). We need some definitions to discuss.

Definition (Hereditary subsets and positive polars)

Let (E, E∗) be a dual pair of (directed partially) ordered real vector spaces such that E+

and E∗+ are mutually dual cones, i.e. E∗+ = {x∗ ∈ E : x∗(x)≥ 0 for x ∈ E}.
For F ⊂ E+, we say it is hereditary if 0≤ x ≤ y ∈ F implies x ∈ F ,
and its positive polar is the positive part of the real polar

F r+ := (F r)+ = {x∗ ∈ E∗ : sup
x∈F

x∗(x)≤ 1}+ = {x∗ ∈ E∗+ : sup
x∈F

x∗(x)≤ 1}.

Example (Hereditary C∗-subalgebras)

A C∗-subalgebra B of A is called hereditary if B+ is hereditary in A+.
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Third problem

We focus on the real dual pairs (Asa, A∗sa) and (M sa, M sa
∗ ) with weak/weak∗ topologies.

Theorem ((a)∼(c) in [Haa75], (d) in [Cho25])

Consider the ordered real dual pairs (M sa, M sa
∗ ) and (A

sa, A∗sa) of self-adjoint parts.

(a) If F is a σ-weakly closed convex hereditary subset of M+, then F = F r+r+.

(b) If F∗ is a norm closed convex hereditary subset of M+
∗ , then F∗ = F r+r+

∗ .

(c) If F is a norm closed convex hereditary subset of A+, then F = F r+r+.

(d) If F ∗ is weakly∗ closed convex hereditary subset of A∗+, then F ∗ = (F ∗)r+r+.

They can be written in the form of Hahn-Banach separation, as written at the beginning.
I proved (d) and simplified the proofs of (a)∼(c).
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Corollaries of third problem

Corollary ([Haa75])

For a s.a. weight ϕ on M , (3)⇒(4) holds.

(3) ϕ is σ-weakly lower semi-continuous.

(4) ϕ is a supremum of normal positive linear functionals.

Proof. Let
F := {x ∈ M+ : ϕ(x)≤ 1}, F∗ := {ω ∈ M+

∗ :ω≤ ϕ}.

Then, F∗ = F r+ by definition, and (4) is equivalent to F = F∗
r+.

F is convex and hereditary by definition of s.a. weights, and σ-weakly closed by (3).
So we are done by (a). �
Using (c) instead of (a), we can simplify the proof of the following theorem.

Corollary ([Com68])

A lower semi-continuous s.a. weight on A is a supremum of positive linear functionals.
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Corollaries of third problem

Corollary ([Cho25])

There are 1-1 correspondences










normal
subadditive

weights on M











↔











σ-weakly closed
convex hereditary
subsets of M+











↔











norm closed
convex hereditary
subsets of M+

∗











and


















lower semi-
continuous
subadditive
weights on A



















↔











norm closed
convex hereditary
subsets of A+











(d)
↔











weakly∗ closed
convex hereditary
subsets of A∗+










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Idea of (a)

To motivate the ideas, we sketch (a) and (b). Here are some preparations for (a).

Definition (Suppression by the one-parameter family of functional calculi)

For δ > 0, we define a function fδ : (−δ−1,∞)→ R such that

fδ(t) := t(1+δt)−1, t > −δ−1.

Its graph is a concave hyperbola which approaches to the identity as δ→ 0.
They are operator monotone, σ-strongly continuous, and has the semi-group property.

The domain issue t > δ−1 is highly critical.

Theorem (Krein-Šmulian theorem)

Let E be a Banach space, and let F ∗ be a convex subset of E∗.
Then, F ∗ is weakly∗ closed if F ∗ ∩ E∗r is weakly∗ closed for all r > 0, where

E∗r := {x∗ ∈ E∗ : ‖x∗‖ ≤ r}.
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Idea of (a)

Proof sketch of (a) by Haagerup. Since

F r+ = F r ∩M+
∗ = F r ∩ (−M+)r = (F ∪−M+)r = (F −M+)r ,

F r+r+ = (F −M+)r r+ = (F −M+)+

by the usual real bipolar theorem, it suffices to solve the inclusion problem (F −M+)+ ⊂ F .

Heuristics. Let x ∈ (F −M+)+. Then, we have nets x i , yi ∈ M sa such that

x i → x σ-weakly in M , x i ≤ yi ∈ F.

If x i were bounded by r > 0, then for each 0< δ < r−1 we can define fδ(x i).
Then, (assuming x i → x σ-strongly by the Mazur and fδ(yi)→ yδ σ-weakly by the
Alaoglu) we get from x i ≤ yi ∈ F

fδ(x i)≤ fδ(yi) ∈ F ⇒ 0≤ fδ(x)≤ fδ(y)≤ yδ ∈ F ⇒ fδ(x) ∈ F ⇒ x ∈ F.
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Idea of (a)

Question. How can we remove the boundedness assumption of x i?
Solution. Use the Krein-Šmulian theorem. Define

G := {x ∈ M sa : for any sufficiently small δ > 0, fδ(x) ∈ F −M+}.

It is enough to show
F −M+ ⊂ G, G+ ⊂ F, G ⊂ G,

and the first two are clear.
The weak∗ closedness of G can be shown by the Krein-Šmulian theorem. �
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Idea of (b)

To consider functional calculi of linear functionals, we introduce the following.
It transforms linear functionals to operators in the commutant for suitble representations.

Definition (Bounded commutant Radon-Nikodym derivatives)

Let (π : M → B(H), Ω ∈ H) be the GNS representation of ψ ∈ M+
∗ .

Then, there is a positive bounded linear map θ = θψ : π(M)′→ M∗ defined such that

θ (h)(x) := 〈hπ(x)Ω,Ω〉, h ∈ π(M)′, x ∈ M .

We will call this the RN map of ψ. (It is not a standard terminology.)

If ω ∈ M∗ is dominated by ψ in the sense that |ω(x)| ≤ψ(x) for all x ∈ M+,
then ω is in the image of θ and θ−1(ω) is uniquely defined with ‖θ−1(ω)‖ ≤ 1.
In this case, we have θ−1(ω) = dω/dψ when M is commutative.
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Idea of (b)

Proof sketch of (b). It is enough to prove (F∗ −M+
∗ )
+ ⊂ F∗. Let ω ∈ (F∗ −M+

∗ )
+ with

sequences ωn,ϕn ∈ M sa
∗ such that

ωn→ω in norm of M∗, ωn ≤ ϕn ∈ F∗.

We may assume ‖ωn −ω‖ ≤ 2−n for all n by passing to a subsequence. Define

ψ :=ω+
∑

n

[ωn −ω] +
∑

n

2−n ϕn

1+ ‖ϕn‖
∈ M+

∗ .

Let θ : π(M)′→ M∗ be the RN map associated to ψ. Then, we can define

ωδ := θ ( fδ(θ
−1(ω))), ωn,δ := θ ( fδ(θ

−1(ωn))), ϕn,δ := θ ( fδ(θ
−1(ϕn)))

and prove ω ∈ F∗ as in the proof of (a). �
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Strategies for (d)

To prove (d), let ω ∈ (F ∗ − A∗+)+, and take nets ωi ,ϕi ∈ A∗sa such that

ωi →ω weakly∗ in A∗, ωi ≤ ϕi ∈ F ∗.

Question 1. How can we choose the reference ψ for the Radon-Nikodym?
Solution 1. Take ψi dynamically depending on ωi .

Question 2. How can we commute the weak∗ limit of ωi and fδ without strong topology?
Solution 2. Approximate fδ with affine functions by

t −δ
1
2 ≤ fδ(t)≤ t, |t| ≤ 2−1δ−

1
4 ,

(1+δ−1)t ≤ fδ(t)≤ t, 0≤ t ≤ 1.

These ideas can be also used to simplify the proof of (a).
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Proof of (d)

Proof of (d). It suffices to show (F ∗ − A∗+)+ ⊂ F ∗. Define

G∗ :=











ω ∈ A∗sa :

there is ψ ∈ A∗+, and there is ϕδ ∈ F ∗

for any sufficiently small δ > 0, such that
‖ψ‖ ≤ 1, ‖ϕδ‖ ≤ δ−1, and ω≤ ϕδ +δ

1
2ψ











.

It suffices to show F ∗ − A∗+ ⊂ G∗, G∗+ ⊂ F ∗, and G∗ ⊂ G∗.
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Proof of (d)

Step 1. Let ω ∈ F ∗ − A∗+. Take ϕ ∈ F ∗ such that ω≤ ϕ. Define, for δ > 0,

ψ :=
[ω]

1+ ‖ω‖
+

ϕ

(1+ ‖ω‖)(1+ ‖ϕ‖)
, ϕδ := θ ( fδ(θ

−1(ϕ))),

where θ is the RN map associated to ψ. The norm conditions ‖ψ‖ ≤ 1 and ‖ϕδ‖ ≤ δ−1

are easily checked. For sufficiently small δ > 0 such that ‖θ−1(ω)‖ ≤ 1+ ‖ω‖ ≤ 2−1δ−
1
4

and δ ≤ 1, we have

θ−1(ω)≤ fδ(θ
−1(ω)) +δ

1
2 ≤ fδ(θ

−1(ϕ)) +δ
1
2 ,

so ω≤ ϕδ +δ
1
2ψ and ω ∈ G∗.
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Proof of (d)

Step 2. Let ω ∈ G∗+. Take ψ ∈ A∗+ and ϕδ ∈ F ∗ such that ‖ψ‖ ≤ 1, ‖ϕδ‖ ≤ δ−1,
ω≤ ϕδ +δ

1
2ψ, for any sufficiently small δ > 0. Let ψδ :=ω+δϕ +ψ, and let θδ be the

associated RN map. For any fixed δ′ > 0, since 0≤ θ−1
δ
(ω)≤ 1, we have

0≤ (1+δ′)−1θ−1
δ
(ω)≤ fδ′(θ

−1
δ
(ω))≤ fδ′(θ

−1
δ
(ϕδ +δ

1
2ψ))

≤ fδ′(θ
−1
δ
(ϕδ) +δ

1
2 )≤ fδ′(θ

−1
δ
(ϕδ)) +δ

1
2 ,

and it implies
0≤ (1+δ′)−1ω≤ θδ( fδ′(θ−1

δ
(ϕδ))) +δ

1
2ψδ.

Since ‖ψδ‖ ≤ ‖ω‖+ 2 is bounded and θδ( fδ′(θ−1
δ
(ϕδ))) ∈ F ∗ is also bounded for fixed δ′

as δ→ 0, by considering the limit along a cofinal ultrafilter on the set of δ, we have
(1+δ′)−1ω ∈ F ∗, so δ′→ 0 gives ω ∈ F ∗.
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Proof of (d)

Step 3. To show G∗ is weakly∗ closed, we claim for any r > 0 that

(F ∗ − A∗+)∩ A∗2r ⊂ G∗, G∗ ∩ A∗r ⊂ (F ∗ − A∗+)∩ A∗2r ,

where A∗r := {ω ∈ A∗ : ‖ω‖ ≤ r}. If these are true, then

G∗ ∩ A∗r = (F ∗ − A∗+)∩ A∗2r ∩ A∗r

is weakly∗ closed and convex in A∗ for all r > 0, so the Krein-Šmulian theorem shows the
claim.
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Proof of (d)

Let ωi ∈ (F ∗ −A∗+)∩A∗2r be a net such that ωi →ω weakly∗ in A∗. Following the proof of
F ∗ − A∗+ ⊂ G∗, we can take ψi ∈ A∗+ and ϕi,δ ∈ F ∗ such that ‖ψi‖ ≤ 1, ‖ϕi,δ‖ ≤ δ−1,
ωi ≤ ϕi,δ +δ

1
2ψi , for uniformly sufficiently small δ such that 1+ 2r ≤ 2−1δ−

1
4 because

‖ωi‖ is bounded by 2r. Since the three conditions are preserved by the weak∗

convergence, taking the limit along a cofinal ultrafilter on the index set of i, we can
obtain limit points ψ and ϕδ so that ω ∈ G∗.

Let ω ∈ G∗ ∩ A∗r . Take ψ ∈ A∗+ and ϕδ ∈ F ∗ with ‖ψ‖ ≤ 1, ‖ϕδ‖ ≤ δ−1, ω≤ ϕδ +δ
1
2ψ,

for any sufficiently small δ > 0. If δ
1
2 < r, then ω−δ

1
2ψ ∈ (F ∗ − A∗+)∩ A∗2r converges to

ω weakly∗ in A∗ as δ→ 0, we have ω ∈ (F ∗ − A∗+)∩ A∗2r . �
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