A solution to Haagerup's problem on normal weights Ikhan Choi The University of Tokyo Kyoto, September 2025 #### Main result In my master's thesis, I solved a 50-year-old problem posed by Haagerup in his master's thesis and obtained the following theorem! ## Theorem ([Cho25], arXiv:2501.16832) Let A be a C^* -algebra, and F^* be a weakly* closed convex hereditary subset of A^{*+} . Then, for any $\omega' \in A^{*+} \setminus F^*$, there exists $\alpha \in A^+$ such that $$\omega'(a) > 1$$ and $\omega(a) \le 1$ for all $\omega \in F^*$. The original proof has been simplified thanks to N. Ozawa. I also simplified the solution of the Dixmier problem ([Dix53]) by Haagerup. ## Theorem ([Haa75]) For a subadditive weight φ on M, the followings are equivalent: - $ightharpoonup \varphi$ is σ -weakly lower semi-continuous. - $\triangleright \varphi$ is a supremum of normal positive linear functionals. #### Contents - 1. Weights - 2. Haagerup's three problem - 3. Strategie - 4. Proof (for those who are interested in ## Definitions of weights We will always denote C^* -algebras and vN algebras by A and M respectively. ### Definition (Weights and subadditive weights) A weight on A is a homogeneous additive functional $\varphi: A^+ \to [0, \infty]$, i.e. $$\varphi(tx) = t\varphi(x), \qquad \varphi(x+y) = \varphi(x) + \varphi(y), \qquad t \ge 0, \ x, y \in A^+.$$ A subadditive weight on A is a homogeneous subadditive functional $\varphi: A^+ \to [0, \infty]$, i.e. $$\varphi(tx) = t\varphi(x), \qquad \varphi(x+y) \le \varphi(x) + \varphi(y), \qquad t \ge 0, \ x, y \in A^+.$$ A subadditive (= s.a.) weight may not be a weight. A positive linear functional is exactly a bounded (or finite) weight. ## Properties of weights Recall that a vN algebra is a C^* -algebra M with a (unique) predual M_* . The weak* topology on M is conventionally called the σ -weak topology. #### Definition (Properties of weights) For a (s.a.) weight φ on A, we say it is - (i) faithful if $\varphi(a) = 0$ implies a = 0 for $a \in A^+$, - (ii) densely defined if $\varphi^{-1}([0,\infty))$ is norm dense in A^+ , - (iii) *lower semi-continuous* if $\varphi^{-1}([0,1])$ is norm closed in A^+ . For a (s.a.) weight φ on M, we say it is - (ii') semi-finite if $\varphi^{-1}([0,\infty))$ is σ -weakly dense in M^+ , - (iii') normal if $\varphi^{-1}([0,1])$ is σ -weakly closed in M^+ . Normality can be regarded as the generalization of the countable additivity of measures, and the σ -weak lower semi-continuity can be understood as the Fatou lemma. "norm dense" and "norm closed" can be replaced into "weakly dense" and "weakly closed". ## Motivating examples for weights ### Example (Localizable measures) A localizable measure μ is always a f.s.n. weight on $L^{\infty}(\mu)$. Every M admits a f.s.n. weight. (A localizable measure space is intuitively a presentation of commutative vN algebra.) #### Example (Radon measures) For a locally compact Hausdorff X, there are natural 1-1 correspondences among - ▶ d.l. weights on $C_0(X)$, - **positive linear functionals on** $C_c(X)$, - ▶ locally finite inner regular Borel measures on X. There is A without a f.d.l. weight. (Every densely defined s.a. weight on a unital A is bounded.) ### Gelfand-Naimark-Segal representations Since a bounded weight $\omega \in A^{*+}$ defines a sesqui-linear form on A, by "separation and completion" we obtain a Hilbert space H, as in the contruction of L^2 . Then, we naturally have $\pi: A \to B(H)$ with a canonical vector $\Omega \in H$ such that $\overline{A\Omega} = H$. #### Example For a finite Radon measure $\mu \in C_0(X)^{*+}$, the associated GNS representation is the multiplication $C_0(X) \to B(L^2(\mu))$, and the cyclic vector Ω is the constant unit function. Weights smoothly generalize this construction to the "unbounded measures". #### Example (Semi-cyclic representations) A semi-cyclic representations of A is a representation $\pi: A \to B(H)$ with a partially defined left A-linear map $\Lambda: A \to H$ of dense range. There is a 1-1 correspondence between weights on A and unitary equivalence classes of semi-cyclic representations of A. (If a weight is bounded, $\Lambda(a) := a\Omega$.) ## Equivalent characterizations for normality of weights # Theorem ([Haa75], Dixmier's problem on normal weights) For a weight φ on M, the followings are all equivalent. $(4)\Rightarrow(3)\Rightarrow(2)\Rightarrow(1)$ are clear. (1) φ is completely additive for positive elements; $$\varphi(\sum_{i} x_i) = \sum_{i} \varphi(x_i), \qquad x_i \in M^+.$$ (2) φ preserves directed suprema; $$\varphi(\sup_{i} x_{i}) = \sup_{i} \varphi(x_{i}), \qquad x_{i} \uparrow \sup_{i} x_{i} \text{ in } M^{+}.$$ (3) φ is σ -weakly lower semi-continuous; $$\varphi(\lim_i x_i) \leq \liminf_i \varphi(x_i), \qquad x_i \to \lim_i x_i \text{ σ-weakly in M^+}.$$ (4) φ is a supremum of normal positive linear functionals; $$\varphi(x) = \sup_{\omega \le \varphi, \ \omega \in M_*^+} \omega(x), \qquad x \in M^+.$$ ## Contents Weights - 1. Weights - 2. Haagerup's three problems - 3. Strategie - 4. Proof (for those who are interested in) ## First problem #### Problem (1.10 in [Haa75]) For a s.a. weight on M, if it preserves directed suprema (2), then is it σ -weakly lower semi-continuous (3)? Haagerup proved $(1)\Rightarrow(3)$ for weights in the first half of [Haa75]. He proved first for σ -finite M, and extended to general M. (M is called σ -finite or countably decomposable if it admits a faithful normal state.) ### Theorem ([Haa75]) For a s.a. weight on general M, $(1)\Rightarrow(3)$ holds if (1)⇒(3) holds on σ -finite vN subalgebras. For a weight on σ -finite M, $(1)\Rightarrow(3)$ holds. Thus, it is enough to solve the problem in the σ -finite case. ## Second problem ### Problem (1.11 in [Haa75]) For a weight on M, is it normal if it is normal on every commutative vN subalgebra? ## Theorem ([Dix53]) For $\omega \in M^{*+}$, the followings are all equivalent. - (-1) ω is completely additive for orthogonal projections. - (0) ω is completely additive for positive elements on commutative vN subalgebras. - (1) ω is completely additive for positive elements. - (2) ω preserves directed suprema. - (3) ω is σ -weakly continuous. - $(3)\Rightarrow(2)\Rightarrow(1)\Rightarrow(0)\Rightarrow(-1)$ are clear also for unbounded weights. - $(-1)\Rightarrow(0)$ is false for unbounded weights. The question asks if $(0)\Rightarrow(1)$ holds. #### Third problem ## Problem (2.7 in [Haa75]) Does the positive bipolar theorem hold for dual C^* -algerbas? See (d) in the next slide. This problem is related to the proof of $(3)\Rightarrow(4)$. We need some definitions to discuss. #### Definition (Hereditary subsets and positive polars) Let (E, E^*) be a dual pair of (directed partially) ordered real vector spaces such that E^+ and E^{*+} are mutually dual cones, i.e. $E^{*+} = \{x^* \in E : x^*(x) \ge 0 \text{ for } x \in E\}$. For $F \subset E^+$, we say it is *hereditary* if $0 \le x \le y \in F$ implies $x \in F$, and its positive polar is the positive part of the real polar $$F^{r+} := (F^r)^+ = \{x^* \in E^* : \sup_{x \in F} x^*(x) \le 1\}^+ = \{x^* \in E^{*+} : \sup_{x \in F} x^*(x) \le 1\}.$$ #### Example (Hereditary C*-subalgebras) A C*-subalgebra B of A is called *hereditary* if B^+ is hereditary in A^+ . ### Third problem We focus on the real dual pairs (A^{sa}, A^{*sa}) and (M^{sa}, M_*^{sa}) with weak/weak* topologies. ## Theorem ((a) \sim (c) in [Haa75], (d) in [Cho25]) Consider the ordered real dual pairs (M^{sa}, M^{sa}_*) and (A^{sa}, A^{*sa}) of self-adjoint parts. - (a) If F is a σ -weakly closed convex hereditary subset of M^+ , then $F = F^{r+r+}$. - (b) If F_* is a norm closed convex hereditary subset of M_*^+ , then $F_* = F_*^{r+r+}$. - (c) If F is a norm closed convex hereditary subset of A^+ , then $F = F^{r+r+}$. - (d) If F^* is weakly* closed convex hereditary subset of A^{*+} , then $F^* = (F^*)^{r+r+}$. They can be written in the form of Hahn-Banach separation, as written at the beginning. I proved (d) and simplified the proofs of (a) \sim (c). ## Corollaries of third problem ## Corollary ([Haa75]) For a s.a. weight φ on M, (3) \Rightarrow (4) holds. - (3) φ is σ -weakly lower semi-continuous. - (4) φ is a supremum of normal positive linear functionals. Proof. Let $$F := \{ x \in M^+ : \varphi(x) \le 1 \}, \qquad F_* := \{ \omega \in M_*^+ : \omega \le \varphi \}.$$ Then, $F_* = F^{r+}$ by definition, and (4) is equivalent to $F = F_*^{r+}$. *F* is convex and hereditary by definition of s.a. weights, and σ -weakly closed by (3). So we are done by (a). Using (c) instead of (a), we can simplify the proof of the following theorem. ## Corollary ([Com68]) A lower semi-continuous s.a. weight on A is a supremum of positive linear functionals. П ## Corollaries of third problem ## Corollary ([Cho25]) There are 1-1 correspondences $$\left\{\begin{array}{c} \textit{normal} \\ \textit{subadditive} \\ \textit{weights on } \textit{M} \end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{c} \sigma\textit{-weakly closed} \\ \textit{convex hereditary} \\ \textit{subsets of } \textit{M}^+ \end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{c} \textit{norm closed} \\ \textit{convex hereditary} \\ \textit{subsets of } \textit{M}^+_* \end{array}\right\}$$ and $$\left\{ \begin{array}{c} \textit{lower semi-} \\ \textit{continuous} \\ \textit{subadditive} \\ \textit{weights on } A \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \textit{norm closed} \\ \textit{convex hereditary} \\ \textit{subsets of } A^+ \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \textit{weakly* closed} \\ \textit{convex hereditary} \\ \textit{subsets of } A^{*+} \end{array} \right\}$$ Weights #### Contents - 1. Weight: - 2. Haagerup's three problems - 3. Strategies - 4. Proof (for those who are interested in) ## Idea of (a) To motivate the ideas, we sketch (a) and (b). Here are some preparations for (a). ## Definition (Suppression by the one-parameter family of functional calculi) For $\delta > 0$, we define a function $f_{\delta} : (-\delta^{-1}, \infty) \to \mathbb{R}$ such that $$f_{\delta}(t) := t(1 + \delta t)^{-1}, \qquad t > -\delta^{-1}.$$ Its graph is a concave hyperbola which approaches to the identity as $\delta \to 0$. They are operator monotone, σ -strongly continuous, and has the semi-group property. The domain issue $t > \delta^{-1}$ is highly critical. ## Theorem (Krein-Šmulian theorem) Let E be a Banach space, and let F^* be a convex subset of E^* . Then, F^* is weakly* closed if $F^* \cap E_r^*$ is weakly* closed for all r > 0, where $$E_{\cdot\cdot}^* := \{x^* \in E^* : ||x^*|| \le r\}.$$ ## Idea of (a) Proof sketch of (a) by Haagerup. Since $$F^{r+} = F^r \cap M_*^+ = F^r \cap (-M^+)^r = (F \cup -M^+)^r = (F - M^+)^r,$$ $$F^{r+r+} = (F - M^+)^{rr+} = (\overline{F - M^+})^+$$ by the usual real bipolar theorem, it suffices to solve the inclusion problem $(F - M^+)^+ \subset F$. **Heuristics.** Let $x \in (\overline{F-M^+})^+$. Then, we have nets $x_i, y_i \in M^{sa}$ such that $$x_i \to x \ \sigma$$ -weakly in M , $x_i \le y_i \in F$. If x_i were bounded by r > 0, then for each $0 < \delta < r^{-1}$ we can define $f_{\delta}(x_i)$. Then, (assuming $x_i \to x$ σ -strongly by the Mazur and $f_{\delta}(y_i) \to y_{\delta}$ σ -weakly by the Alaoglu) we get from $x_i \leq y_i \in F$ $$f_{\delta}(x_i) \le f_{\delta}(y_i) \in F \quad \Rightarrow \quad 0 \le f_{\delta}(x) \le f_{\delta}(y) \le y_{\delta} \in F \quad \Rightarrow \quad f_{\delta}(x) \in F \quad \Rightarrow \quad x \in F.$$ ## Idea of (a) **Question.** How can we remove the boundedness assumption of x_i ? Solution. Use the Krein-Šmulian theorem. Define $$G := \{x \in M^{sa} : \text{for any sufficiently small } \delta > 0, f_{\delta}(x) \in F - M^{+}\}.$$ It is enough to show $$F - M^+ \subset G$$, $G^+ \subset F$, $\overline{G} \subset G$, and the first two are clear. The weak* closedness of G can be shown by the Krein-Šmulian theorem. ## Idea of (b) To consider functional calculi of linear functionals, we introduce the following. It transforms linear functionals to operators in the commutant for suitble representations. ### Definition (Bounded commutant Radon-Nikodym derivatives) Let $(\pi: M \to B(H), \ \Omega \in H)$ be the GNS representation of $\psi \in M_*^+$. Then, there is a positive bounded linear map $\theta=\theta_{\psi}:\pi(M)'\to M_*$ defined such that $$\theta(h)(x) := \langle h\pi(x)\Omega, \Omega \rangle, \qquad h \in \pi(M)', \ x \in M.$$ We will call this the RN map of ψ . (It is not a standard terminology.) If $\omega \in M_*$ is dominated by ψ in the sense that $|\omega(x)| \leq \psi(x)$ for all $x \in M^+$, then ω is in the image of θ and $\theta^{-1}(\omega)$ is uniquely defined with $\|\theta^{-1}(\omega)\| \leq 1$. In this case, we have $\theta^{-1}(\omega) = d\omega/d\psi$ when M is commutative. ## Idea of (b) Proof sketch of (b). It is enough to prove $(\overline{F_*-M_*^+})^+ \subset F_*$. Let $\omega \in (\overline{F_*-M_*^+})^+$ with sequences $\omega_n, \varphi_n \in M_*^{sa}$ such that $$\omega_n \to \omega$$ in norm of M_* , $\omega_n \le \varphi_n \in F_*$. We may assume $\|\omega_n - \omega\| \le 2^{-n}$ for all n by passing to a subsequence. Define $$\psi := \omega + \sum_n [\omega_n - \omega] + \sum_n 2^{-n} \frac{\varphi_n}{1 + \|\varphi_n\|} \in M_*^+.$$ Let $\theta:\pi(M)'\to M_*$ be the RN map associated to ψ . Then, we can define $$\omega_{\delta} := \theta(f_{\delta}(\theta^{-1}(\omega))), \qquad \omega_{n,\delta} := \theta(f_{\delta}(\theta^{-1}(\omega_n))), \qquad \varphi_{n,\delta} := \theta(f_{\delta}(\theta^{-1}(\varphi_n)))$$ and prove $\omega \in F_*$ as in the proof of (a). # Strategies for (d) To prove (d), let $\omega \in (\overline{F^* - A^{*+}})^+$, and take nets $\omega_i, \varphi_i \in A^{*sa}$ such that $$\omega_i \to \omega \text{ weakly* in } A^*, \qquad \omega_i \le \varphi_i \in F^*.$$ **Question 1**. How can we choose the reference ψ for the Radon-Nikodym? **Solution 1.** Take ψ_i dynamically depending on ω_i . **Question 2.** How can we commute the weak* limit of ω_i and f_{δ} without strong topology? **Solution 2.** Approximate f_{δ} with affine functions by $$t - \delta^{\frac{1}{2}} \le f_{\delta}(t) \le t, \qquad |t| \le 2^{-1} \delta^{-\frac{1}{4}},$$ $$(1+\delta^{-1})t \le f_{\delta}(t) \le t, \qquad 0 \le t \le 1.$$ These ideas can be also used to simplify the proof of (a). #### **Contents** Weights - 1. Weights - 2. Haagerup's three problem - 3. Strategie - 4. Proof (for those who are interested in) *Proof of (d).* It suffices to show $(\overline{F^* - A^{*+}})^+ \subset F^*$. Define $$G^* := \left\{ \begin{array}{c} \text{there is } \psi \in A^{*+}, \text{ and there is } \varphi_\delta \in F^* \\ \omega \in A^{*sa} : \text{ for any sufficiently small } \delta > 0, \text{ such that } \\ \|\psi\| \leq 1, \ \|\varphi_\delta\| \leq \delta^{-1}, \text{ and } \omega \leq \varphi_\delta + \delta^{\frac{1}{2}}\psi \end{array} \right\}.$$ It suffices to show $F^* - A^{*+} \subset G^*$, $G^{*+} \subset F^*$, and $\overline{G^*} \subset G^*$. Step 1. Let $\omega \in F^* - A^{*+}$. Take $\varphi \in F^*$ such that $\omega \leq \varphi$. Define, for $\delta > 0$, $$\psi := \frac{[\omega]}{1 + \|\omega\|} + \frac{\varphi}{(1 + \|\omega\|)(1 + \|\varphi\|)}, \qquad \varphi_{\delta} := \theta(f_{\delta}(\theta^{-1}(\varphi))),$$ where θ is the RN map associated to ψ . The norm conditions $\|\psi\| \le 1$ and $\|\varphi_\delta\| \le \delta^{-1}$ are easily checked. For sufficiently small $\delta > 0$ such that $\|\theta^{-1}(\omega)\| \le 1 + \|\omega\| \le 2^{-1}\delta^{-\frac{1}{4}}$ and $\delta < 1$, we have $$\theta^{-1}(\omega) \leq f_{\delta}(\theta^{-1}(\omega)) + \delta^{\frac{1}{2}} \leq f_{\delta}(\theta^{-1}(\varphi)) + \delta^{\frac{1}{2}},$$ so $\omega \leq \varphi_{\delta} + \delta^{\frac{1}{2}} \psi$ and $\omega \in G^*$. Step 2. Let $\omega \in G^{*+}$. Take $\psi \in A^{*+}$ and $\varphi_{\delta} \in F^{*}$ such that $\|\psi\| \leq 1$, $\|\varphi_{\delta}\| \leq \delta^{-1}$, $\omega \leq \varphi_{\delta} + \delta^{\frac{1}{2}}\psi$, for any sufficiently small $\delta > 0$. Let $\psi_{\delta} := \omega + \delta \varphi + \psi$, and let θ_{δ} be the associated RN map. For any fixed $\delta' > 0$, since $0 \leq \theta_{\delta}^{-1}(\omega) \leq 1$, we have $$0 \leq (1+\delta')^{-1}\theta_{\delta}^{-1}(\omega) \leq f_{\delta'}(\theta_{\delta}^{-1}(\omega)) \leq f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta} + \delta^{\frac{1}{2}}\psi))$$ $$\leq f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta}) + \delta^{\frac{1}{2}}) \leq f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta})) + \delta^{\frac{1}{2}},$$ and it implies $$0 \leq (1+\delta')^{-1}\omega \leq \theta_{\delta}(f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta}))) + \delta^{\frac{1}{2}}\psi_{\delta}.$$ Since $\|\psi_{\delta}\| \leq \|\omega\| + 2$ is bounded and $\theta_{\delta}(f_{\delta'}(\theta_{\delta}^{-1}(\varphi_{\delta}))) \in F^*$ is also bounded for fixed δ' as $\delta \to 0$, by considering the limit along a cofinal ultrafilter on the set of δ , we have $(1 + \delta')^{-1}\omega \in F^*$, so $\delta' \to 0$ gives $\omega \in F^*$. Step 3. To show G^* is weakly* closed, we claim for any r > 0 that $$\overline{(F^*-A^{*+})\cap A_{2r}^*}\subset G^*, \qquad G^*\cap A_r^*\subset \overline{(F^*-A^{*+})\cap A_{2r}^*},$$ where $A_r^* := \{ \omega \in A^* : ||\omega|| \le r \}$. If these are true, then $$G^* \cap A_r^* = \overline{(F^* - A^{*+}) \cap A_{2r}^*} \cap A_r^*$$ is weakly* closed and convex in A^* for all r > 0, so the Krein-Šmulian theorem shows the claim. Let $\omega_i \in (F^*-A^{*+}) \cap A_{2r}^*$ be a net such that $\omega_i \to \omega$ weakly* in A^* . Following the proof of $F^*-A^{*+} \subset G^*$, we can take $\psi_i \in A^{*+}$ and $\varphi_{i,\delta} \in F^*$ such that $\|\psi_i\| \le 1$, $\|\varphi_{i,\delta}\| \le \delta^{-1}$, $\omega_i \le \varphi_{i,\delta} + \delta^{\frac{1}{2}} \psi_i$, for uniformly sufficiently small δ such that $1+2r \le 2^{-1}\delta^{-\frac{1}{4}}$ because $\|\omega_i\|$ is bounded by 2r. Since the three conditions are preserved by the weak* convergence, taking the limit along a cofinal ultrafilter on the index set of i, we can obtain limit points ψ and φ_δ so that $\omega \in G^*$. Let $\omega \in G^* \cap A_r^*$. Take $\psi \in A^{*+}$ and $\varphi_\delta \in F^*$ with $\|\psi\| \le 1$, $\|\varphi_\delta\| \le \delta^{-1}$, $\omega \le \varphi_\delta + \delta^{\frac{1}{2}} \psi$, for any sufficiently small $\delta > 0$. If $\delta^{\frac{1}{2}} < r$, then $\omega - \delta^{\frac{1}{2}} \psi \in (F^* - A^{*+}) \cap A_{2r}^*$ converges to ω weakly* in A^* as $\delta \to 0$, we have $\omega \in \overline{(F^* - A^{*+}) \cap A_{2r}^*}$. #### References I - [Cho25] Ikhan Choi. A solution to Haagerup's problem and positive Hahn-Banach separation theorems in operator algebras, 2025. arXiv 2501.16832. - [Com68] François Combes. Poids sur une C*-algèbre. J. Math. Pures Appl. (9), 47:57–100, 1968. - [Dix53] J. Dixmier. Formes linéaires sur un anneau d'opérateurs. Bull. Soc. Math. France, 81:9–39, 1953. - [Haa75] Uffe Haagerup. Normal weights on W*-algebras. J. Functional Analysis, 19:302–317, 1975. - [Tak02] M. Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5. - [Tho24] Klaus Erik Thomsen. An introduction to KMS weights, volume 2362 of Lecture Notes in Mathematics. Springer, Cham, [2024] ©2024.