EEMENTE 1S 2023 % (Fa4)

M1 (7y 7 2AHe LTOEY 27—, HERIKC OFDEE AT LT, K% a,b,c,d ADITT
ad—bc =1 {725 —RBEN f (2) = (az+b) /(cz +d) DES % PSL(2,A) £ EL . KT PSL(2,7Z)
RED2S—BrR. FEFHH:={z€C:Imz> 0} DHHEAD :={z€H:|z|> 1, |Rez| < 1}
TERT D.

(1) PSL(2,R) OTT f 3 EHHEBRH ->H Z2ERT 5 I L 2nt.

(2) PSL(2,Z) 13 S(2):==1/2 £ T(2) :=2+1 X KXo THEREINZ I Z2RHE. 2Fbh, £TOIT
MSE v T 0FREIOERYE LTENRS Z & ZRE.

(3) £A DIXPSL(2,Z) DEAMBERTH 2 Z 2. DFD, XROZONKH DI L ZmE !

(@) TEDHzeHIIHLT f(z) €D %723 f € PSL(2,Z) 3V b —DFET 5.
b) FEDH zeHIIH LT f(z) €D Zifi/=F f € PSL(2,Z) B% K ¥ H—D LLTEE LR,

(4) PSL(2,Z) I H CEMEFREHRICER T3 2RE. 2Fh, FEDR 2z € HIIH L THIHE
{f(2): f €PSL(2,Z)} DHEHEEETH 5 Z & &t

RS2 (7574 ) REIBOES R, PRI LCd & h ERIBE £ 25 £(0) = 1 %l
LT3, b UILHEO 2] < 1 2k THEK 2 S LT Ref(2) > 0 5512, f 2 NS5TH RULKDOMH
S, MRS BREURR F(2) = 1+25%° ik 2RO LT 5.

(1) FOBE Kk EHO<r <1 ML TROXERYE !

1 27
ok = —J Re f(rei?)e % dg.
27 J,

(2) RDOZODEUMFAETH 2 Z L 2Rt

(@ B f B HZTARIRTHS.

b) EEDEDER n 12 L TH (¢, --,¢,) €ECM X 0 €[0,2m) I & o THAZRF RN
T2HEER (70, e ) e Ct DIMVESRDILTH B

3 (774 VR - JEKER). ERFH EOGEHRBEK f 2222, ROXIZr>0120F 2
BIRLAC, f) ZEET 5

el

+if@p 2<¢

A(r, f) = lf Fx+iy)tdxdy, 727U, fH(2):=
\/Wgr

BIR f* % f OBEEEH LIS,

(1) EEDR (x,y) e RZ IR LT,
1 Vol oP
Lrtarin? =% - Lixy)
T dx dy

Zii7e 3P R? FOERBE P v Q Bk, B K(x,y):=1+|f(x+iy)>? ZHWTEE.



2 7V - OEMYIFEADOFEEZHAVT r>0 I L TRORDKD LD 2Rt !

2

fA(t,f)%zf n(t,f)%+i log /1 +|f (rei®)2d6 —log /1 +|f (0)|2.

0 0 0
7272 U n(r, f) AR B(O,r) NICH 2 EBEHEERIAD THA T f OMOBKTH 2. DM
BE f OF7—ILT7 LR « BKIEH L MR,

(3) BREEBEE f* DEF 13, HIERC>0DFEEL T, 2 TDzeCIIH LT If(2)| < Cel
THd Izt FrZ, f I3 C L2 LERITH 3.

B4 (WoMEEDT4+ V27 L. ERQ:={(x,y)eR?>:x2+y2<1, x>0, y>0} FITERZh
T=AARIBEE v € C2(Q, R) DSRDBEFUESM 22T 35 1 B il (x,Y0) €0QITXH LT

1 ify,>0,

lim  v(x,y)=
) 0 ify,=0and0<x,<1.

(x,¥)=(x0,¥0

1) T avLYOEBROERZHNT v IZMERQ = {(x,y) eR*: x2+ y2 < 1, x > 0} LD
¥V eCclQ,R) ICIEE NS Z L &RE.

(2) WYIREMERE Ry Y VESZHWT Y 2R X.



Solution of 1. (1) Let f(2) = (az + b)/(cz + d) with a, b,c,d € R such that ad — bd = 1. Since it has
the inverse transform z — (dz — b)/(—cz + a) that is also an element of PSL(2,R), it is enough to show
the well-definedness f(z) € H for 2 € H. Let 2 = x +iy € H with y > 0. Then,

ax+b+iay ay(cx+d)—(ax+b)cy y

) = dvicy T (x+dP+(y P (x+ AP (P

>0,

so f(z) € H.
(2) Let f(2) = (az + b)/(cz + d) with a, b, c,d € Z such that ad — bd = 1. Consider the following
two kinds of moves of f:

e When |a| < |c|, we take
—cz—d

az+b

Sf(z) =

* When |a| > |c| > 0, with g, € Z such that a = qc +r and 0 < r < |c|, we take

rz+b—qd
cz+d

T7f(2) =

By repeating the two moves alternately, we arrive at ¢ = 0 in finitely many steps because |c| strictly
decreases. Then, since ad—bc = 1, we may assume a = d = 1 so that (az+b)/(cz+d) =z+b = T(2).

(3) (a) Let 2z, € H. We may assume Rez, € [—%, %) by taking T? on g, for appropriate q € Z. Define
a sequence z, € H inductively by

z, = T_I.RES(Zn—l)“'%JS(zn_l), n>1.

Then, one can show Rez, € [—%, %) for all n. Since

Imz,
(Re Zp—1 )2 + (Im Zn—1

Imz, =ImS(z,-1) = )2 > g(Imz,_,),

where g(y) :=4y/(1+4y?), and since g"(y) 1 @ forO<y< ? as n — oo, there is n such that

1 1
—= <Rez, <, Imz, > ﬁ
2 2 4

If |z,| = 1, then we are done, so assume |z,| < 1. Now we have three possibilities: |z, — 1] < 1,
|z, + 1| < 1, or min{|z, — 1|, |2, + 1|} > 1. For each case, we can check that T~!Sz,, TSz,, Sz, is
contained in D, respectively.

(b) Forze D, letw=(az + b)/(cz+d) € D with a, b, c,d € Z such that ad — bd = 1. It suffices to
show ¢ = 0. Suppose ¢ # 0. Note that |z —n| > 1 and |w—n| > 1 for every integer n since z,w € D.
Write

az+b a

a
-1, nez.
cz+d ¢

1
—_— + J—
c(cz+d)' |n c

1<|w—n|=

az+b
—n| <
cz+d

| a

C

If |c| > 2, then by taking n such that [n—(a/c)| < 1

3, the estimate |c(cz +d)| > lc|?Imz > 24/3 leads
a contradiction to the above inequality. If |c| = 1, then since a/c is an integer, by letting n = a/c, we
have a contradiction |c(cz + d)| = |z + cd| > 1 from the assumption z € D. Thus, ¢ = 0, and we are
done.

(4) Suppose the orbit {f(z) : f € PSL(2,Z)} is not discrete. Then, there is g, € H and a sequence
f, € PSL(2,7Z) such that f,(z) # 2, for all n and f, () — 2, as n — co. We may assume z,z, € D by the

part (a) of (3). Consider

P:={I,T,TS,ST 'S =TST,ST},8,ST,STS =T 'ST™}, T7!S, T~} c PSL(2, Z).



Then, we can check that Ufep f(D) contains an open neighborhood U of D. For every n that is large
enough, from f,(D) N U # @, it follows that f,(D) intersects U C Ufep f (D), that is, there is f, € P
such that f,(D)N fo(D) # @, and easily f,(D)N f,(D) # @, because f (D) is open and f (D) is closed for
any f € PSL(2,Z). By the part (b) of (3), we can conclude that f, belongs eventually to P as n — oo.
Since P is a finite set, f,(z) cannot converge to z, unless f,(z) = z, for sufficiently large n, therefore
the orbit is discrete. O

Remark. A discrete subgroup of PSL(2, R) and PSL(2, C) is called a Fuchsian group and a Kleinian group
respectively. It is known that a subgroup of PSL(2, R) is discrete if and only if it properly discontinuously
acts on H. There is a more generalized theorem used for verifying a group generated by several elements
of PSL(2,R) is Fuchsian, the Poincare polygon theorem. It states that if there is a polygon in H satisfying
two conditions called a side pairing condition and elliptic cycle condition is realized as a fundamental
domain, so the group acts on H properly discontinuously. O



Solution of 2. (1) Suppose k > 0 first. The Cauchy integral formula writes

a K[ f@) k[T e

20kl =——(0) =
k () 2mi lal=r zk+1 27 ), (rele)k

and it implies
1 2n ) )
207k = — f f(rei)e %9 dp.
27 J,
Since f(z)z* is analytic, the Cauchy theorem can be applied to get

27
0= i f(2)zkdz = if f(rei®)rkeik® do,
27 J,

2mi -
and it implies
1 2n ‘
0=— J f(rei®)e 9 do.
27 J,

By combining the above two equations, we obtain the formula. For k = 0, applying the Cauchy theorem
for f, we have

f(Z)

|z|=r

2n
c=f(0)=-= —%J Re f(rei)do.
0

2mi

Alternatively, we can show the same result using the orthogonal relation of complex exponential
functions. An easy computation shows the identity

Ref (re'®) = 2[f(re'®) + Fre®)]

= % (1 + ZZCk(reie)k) + (1 + Zch(reie)k)
k=1 k=1

oo
|:(1 + ZZC r elke) + (1 + sz"e—”‘e)]
k=1
= Z cirkletkd
k=—00

From the uniform convergence of the power series on the compact set {z : |z| < (r + 1)/2}, it follows
that

Nl*—‘

1 2n o 1 2n o]
— Re f (rei?)e % dg = Z il — ellfe7k0 49 = Z s, = ¢k,
27 J, 4 2r 4
|=—00 0 [=—00

(2) (b)=(a) Denote by K, the convex hull of the curve 8 — (e7® ... e7"%) € C". Suppose first
that (¢;,--- ,¢,) € K,,. For each n, there exists a finite sequence of pairs (4, ;, 6, ;); having the following
convex combination

(¢, ,c) = Zln,j(e_ie”’% o, emin6ny)
J

with coefficients A, ; > 0 such that Z Anj = 1. Define

e +z
fa2) —ZM :

—2

which has positive real part on |z| < 1 because Re(e% +z)/(e!% —z) > 0 for |z| < 1. Then,

fn(z)—an](lJrZZe 'Uzk)—1+22ckz + Z (ZZA etk M)

k=n+1



implies

oo oo
@) =@ =| 2 (szn,,»e—ik%)zk— > 20.2*
k=n+1 Jj k=n+1
oo oo
<> (szn,jelk% —2¢|lz[F < D 4lalf
k=n+1 J k=n+1

converges to zero for |z| < 1. Therefore, f has a non-negative real part on the open unit disk. The
non-negativity can be strengthened to positivity by the open mapping theorem, so f belongs to the
Carathéodory class.

(a)=(b) Conversely, suppose that f is in the Carathéodory class. Let (v, -+ ,¥,) be any point on the
surface dK,, of K,, and S any supporting hyperplane of K,, tangent at (y,-,y,)- Let (uq,:--,u,) €C"
be the outward unit normal vector of the supporting hyperplane S. Note that this outward unit normal
vector is uniquely determined for each hyperplane S with respect to the real inner product structure on
the 2n-dimensional real vector space C" given by

n

n
(21,7 ,20), (Wy, -+ ,wy)) = Z(Rezk Rew; +Img Imw,) = ReszWk.
k=1 k=1

Then, we know that )., _, [u;|* = 1 and the maximum

n
M := max Rerkﬂk >0
(1, ,x, )€K,
k=1
is attained at (yq,--,¥,). Our goal is now to verify the bound

n

Re Y iy <M
k=1
from the assumption that f is of Carathéodory class. Once the bound is obtained, then it means that
(cq,+++,c,) is contained in the same side as K,, of arbitrary hyperplanes tangent to K,,, so we finally
conclude (¢q,--+,¢,) €K,.
719’ oo

Since for any 6 € [0, 27) the point (e ,e~"%) is in K, we have

n
Re > e m, < M.
k=1

For € > 0, we have

for any 0 < r < 1 sufficiently close to 1, thus we can write

n

n 2n
_ 1 o
Re E Cklx =Re E 5 rkJ Re f(rei)e %, do
=1 =T 0

k=1

1 2r n 1
=— Ref(reie)ReZ—e_ikeﬂk do
21 ), £ rk

271
< if Ref(re'®)dO - (M +¢)
27 J,
=Ref(O)(M+¢e)=M+¢

thanks to the part (1) and the positivity of Re f, and by limiting r — 1 from left we get the bound we
want. -



Solution of 3. (1) Write f = u+ iv for real-valued u and v. Since

d(de+Qdy)=[a—Q—a—p]dx/\dy=lf#zdx/\dy,
ox Jdy T
and since
1 4 UyVy —UyVy dundv
—f"dxANdy=——""——"—dxANdy=—————
nf XAy (1 +u?+v2)? xAay (1l +u?+v2)?

v u
=d|— du+ d
( 271+ u? +v2) “ 27(1 4+ u2 +v2) v)

v u
d(———Y  (u dx+u,dy)+ —— (v, dx+v,d
( 2n(1+u2+v2)(ux X +uydy) 2n(1+u2+v2)(vx XYy y))

VU, — Uy uv, —vu
d|——2—>—dx+ L )
( 2m(1 +u? +v2) 21(1 +u? +v2) Y
(_ uu,, + Vv, . uu, +vv, )

27(1 +u2 +v2) 27(1 +u2 +v2) ’

we can check the following satisfy the equation of the problem:

— _i Q= K
4nK’ 4nK’

(2) Since the equation holds for r = 0, it suffices to show the differentiated equation

2n

A(r,f):n(r,f)+Li log /K(r,0)d6
2 dr o

for almost every r > 0, where K(r,0) = 1 + |f (re!?)|%. In particular, we will prove this equation for
every r such that f does not have a pole a with |a| = r. Fix such r and let {a;}"_, be poles of f in the
region |z| < r with multiplicities m; for each q;. Since

1 =K, dx+K,d 1 —iK,dx+K,id
Pdx+Qdy = ——= y_ 1 Y

27 2K C2mi 2K
1 (K,—iK,)(dx +idy) 1 K.dx+K,dy
C2mi 2K 2mi 2K
1 uu, +vv, —iuu, —ivy, 1 dK
=— dg— ——
27 14+u2+v2 2mi 2K
1 (uy +ivy)(u—iv) d 1 dlogK
= — z —_— ——
27l 1+ u2+v2 2ni 2

_ 1 ') IfE)P P 1 dlogk
Toni ) 1+ If@E T 2mi 2

we have
2m 2m 2m
d K +
L2 logy/k(n0)do=— | rdo=-_—| HITrgg
2ndr ), 2n J, 2K 27 J, K
r (*" u(cos Ou, + sin Ou,) +v(cos Ov, +sin6v,)
T 2m ), K
T 2r Re[(cos O +isin 0)(u, +iv,)(u—iv)] 40
21 ), K
2T . 9,7 3
:Rei, rleffd@zRei, I'f dz
2ni J, 1+|f? 2mi ‘z|:r1+|f|2

= ReJ (Pdx+Qdy),
|z|=r



and by the argument principle and |f (z)| — oo near the pole z — a;,

_ 1 ') If@)P
fzailg(P dx+Qdy)= i flzailg m—l @R dz

1 f'(2) 1

=—m;, — — ———dz > —m;
U o loma e f(z) 1+|f(2)|2 i

as € = 0. Then, the Green theorem is applied to have

1
A(r,f)=lim_f frle+iy)dxdy
e—0 TT lz|<r, min; |Z—ai‘2€

=f (de+Qdy)—lin(1)Zf (Pdx+Qdy)
|z|=r =

z—a;|=¢
21 n
r d
=—— log4/K(r,0)d0 +il Pd d "
py i og (r,0) +1 mlezr( x+Q y)+;ml

Because Z?:l m; = n(r, f ) by definition, and seeing the real part, we obtain the desired equation.
(3) Since every Taylor coefficient of the logarithm is real, we have

Relog f(z) = %(logf(z) +logF()) = log £ (2)).

Take a € C and let r := 2|a|. By the Schwarz integral formula,

1 (7 re®+a
log|f (a)l =Relog f(a) = — f Re
27 0 r
21

3 Relog f (re?)d6
et —a

1

ret? +a
S R -
27 0

log|f (rei®)|d6

rel® —a

1 27
S—f 3log+/1+|f(rei?)2d6
2n ),
' dt " dt
<3| A(t,f)— <3| M?*t>— =6M?|al?,
0 t 0 t

6M

50 C := eoM’ proves the theorem, where M is a bound of the spherical derivative f*.



Solution of 4. (1) Identify Q and  as subsets of C by letting (x,y) = x +iy. Consider a harmonic
conjugate —u of v on Q such that a function f(x +1iy) :=u(x,y)+iv(x, y) is holomorphic on Q. If we
define

_ z€0,

= f(z) if Imz>=0, ~
f(z)'_{f(z) if Imz <0,

then f is holomorphic on € \ (0,1), and is also continuous on the whole € because of the boundary
condition of v on the real axis. We claim that f is in fact holomorphic on . If the claim is true, then
V:=Imf is the desired extension of v, which satisfies in addition that for (x,, y,) € € we have

) _ 1 if yo >0,
lim v(x,y)=
(6,y)=(x0,¥0) -1 ify,<O.

Let y be a contour defined for sufficiently small 6 > 0 as the following figure:

Denote by Q5 :={a € : min, .5 |20 —al > 6} the interior of y. Define a function g on Qs such that
- 1 [ f
g(a):= —f f) dz

2mi ,2—a

Note that the integrand is continuous on the contour y, and g is holomorphic on {5 by the Morera

5 a€£~25.

theorem, because for every affine triangle o in the interior of y we have

fg(a)dz=JL, Mdzda=L,J.[ Mda}dz=0
- o 271 ,Ea 27l Lo z2—a

by the Fubini theorem and the Cauchy theorem for o.
Moreover, for a € {5 N we have
1 f 1 fi ~ =
g(a)=Ilim| — @dz—i-—, @dz = f(a)+0=f(a),
e—0| 271 , Z2a 2mi , Ea
where y; and y, are contours given as the folllowing figure for £ > 0:

Y1

Y2




The same result holds also for a € 5 \ €, so we can conclude g(a) = f(a) ona € Q; \ (0,1), and
by the contintuity of f and g, we finally have f = g so that f is holomorphic on 5. Since the above
arguments make sense for every § > 0 small enough, the union Q = Us=o Qs implies that the function
f is holomorphic on €.

(2) The domain  is conformally mapped onto the upper half plane H = {z € C : Imz > 0} by

- N2
go:ﬁ—>H:z»—>(.z+l) .
iz+1

Note that p(Q)={z €H: |z| > 1}.
We can compute for (x, y) € £

4x(1—x*—y?)
(x2+(y—1)2)%

x2 4+ (y +1)?

2
x2+(y—1)2) , Imp(x+iy)=

lo(x +iy)* = (

Define a function V : H — R such that V := ¥ o ¢!, Then, V is a harmonic function satisfying the
boundary condition

) -1 if|xel <1,
lim V(x,y)=
(2,¥)—(x0,0) 1 if |xo| > 1.

For (x,y) € ¢(£) so that x? + y2 > 1 the Poisson kernel gives that

1-V(x,y) 1 (' y
LA LR " A—
2 ) (x—t)2+y2

1( 4 1—x 711+x)
=—|tan —— +tan ——
y y

T
2
= —tan’ —y,
T x2+y2-1
o)
L x4y?—1

2
V(ix,y)= o tan 2y

Thus we have for (x, y) € Q

L y(@+xt+y?)

v(x,y)=V(p(x +iy)) = %tan x(1—x2—y2)’
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