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1 The Vlasov-Poisson system

Consider the following Cauchy problem for the Valsov-Poisson system:














































∂t f + v · ∇x f + γE · ∇v f = 0, (t, x , v) ∈ (0,∞)×R3
x ×R

3
v ,

E(t, x) = −∇xΦ,

Φ(t, x) =

∫

ρ(y)
4π|x − y|

d y,

ρ(t, x) =

∫

f dv,

f (0, x , v) = f0(x , v)≥ 0,

(1)

where γ = ±1. For example, we have repulsive problem γ = +1 for electrons in plasma theory and
attractive problem γ= −1 for galactic dynamics. (ρ denotes the mass density.)

This report is a review of Schaeffer’s paper [3], and is written following Glassey’s book [1]. We
mainly investigate the local and global existence problem for a classical solution of the Cauchy problem
for the Vlasov-Poisson system. More precisely, we prove there is a unique global C1

c solution when given
a C1

c initial data f0. Let us define our solution space.

Definition. Let f0 : R6→ [0,∞] be a function. A function f : [0, T]×R6→ R is said to be a classical so-
lution of the Cauchy problem for the Vlasov-Poisson system with initial data f0 if f ∈ C1([0, T]; C1

c (R
6))

and satisfies all equations in (1) on its domain. Further, if f ∈ C1(R+; C1
c (R

6)), then the classical solu-
tion f is said to be global, where R+ = [0,∞).

The precise statement of the global existence theorem is as follows:

Theorem 1.1. Let f0 ∈ C1
c (R

6) with f0 ≥ 0. Then, there exists a unique global classical solution of the
Cauchy problem for the Vlasov-Poisson system with initial data f0.

Results in sections 1.1 and 1.2 provide basic ingredients that will be used in the whole article. On the
other hand, results in 1.3 cannot be used in any local existence proof because they assume the existence
of solutions, but they help understand the fundamental nature of solutions of the Vlasov-Poisson system
and are used in the proof of global existence.

Notation. We use the asymptotic notation

g(t)® h(t) ⇐⇒ ∃ c = c( f0), g(t)≤ c h(t)

and
g(t)' h(t) ⇐⇒ ∃ c, g(t) = c h(t).

This report does not contain any other norms except the Lp norms so that double vertical bars
always refer to the Lp norms. We also omit marginalized variables and the subscript L. For example,

‖ f (t)‖p = (
∫∫

| f (t, x , v)|p dv d x)1/p, ‖ρ(t)‖p = (
∫

|ρ(r, x)|p d x)1/p.

1.1 The Poisson equation

For the three-dimensional boundaryless problem of the Poisson equation

−∆Φ(x) = ρ(x)

in which the solution Φ vanishes at infinity, it is well-known that

Φ= 1
4π|x | ∗ρ,
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so the electric field in the Vlasov-Poisson system is given by

E = −∇xΦ= −∇x(
1

4π|x | ∗ρ) =
x

4π|x |3
∗ρ.

It can be rewritten as

E(t, x) =
1

4π

∫

(x − y)ρ(t, y)
|x − y|3

d y.

The nonlinearity of the system is originated from the force field E, so its estimates play a crucial role
in study of the nonlinear system. Since it is given by the solution of the Poisson equation, estimates
of the Riesz potential, the convolution with a kernel of the form |x |−(d−α), are directly connected to
estimates of the force field.

Lemma 1.2 (Uniform estimates of Riesz potential). Let ρ ∈ C1
c (R

d).

(a) There is a field estimate
‖ 1
|x |d−1 ∗ρ‖∞ ® ‖ρ‖1−1/d

∞ ‖ρ‖1/d1 .

(b) For log+(x) :=max{0, log x}, we have an estimate of derivative of the field

‖∇( 1
|x |d−1 ∗ρ)‖∞ ® 1+ ‖ρ‖∞ log+ ‖∇ρ‖∞ + ‖ρ‖1.

Proof. (a) Let 0≤ 1
p <

α
d <

1
q ≤ 1. Since (d −α)p < d < (d −α)q,

| 1
|x |d−α ∗ρ|=
∫

|x−y|<R

ρ(y)
|x − y|d−α

d y +

∫

|x−y|≥R

ρ(y)
|x − y|d−α

d y

≤ ‖ρ‖p′(
∫

|y|<R

d y
|y|(d−α)p

)1/p + ‖ρ‖q′(
∫

|y|≥R

d y
|y|(d−α)q

)1/q

' ‖ρ‖p′(
∫ R

0

rd−1−(d−α)p dr)1/p + ‖ρ‖q′(
∫ ∞

R

rd−1−(d−α)q dr)1/q

' ‖ρ‖p′R
d
p−d+α + ‖ρ‖q′R

d
q −d+α.

By choosing R such that ‖ρ‖p′R
d
p−d+α = ‖ρ‖q′R

d
q −d+α, we get

‖ 1
|x |d−α ∗ρ‖∞ ® ‖ρ‖

1− αd −
1
q

1
p −

1
q

p′ ‖ρ‖

1
p −1+ αd

1
p −

1
q

q′ ,

so the inequality

‖ 1
|x |d−α ∗ρ‖

1
q−

1
p

∞ ® ‖ρ‖
1
q−

α
d

p ‖ρ‖
α
d −

1
p

q

is obtained by interchaning p and q with their conjugates. The desired result gets p =∞, α = 1, and
q = 1.

(b) Let 0< Ra ≤ Rb be constants which will be determined later. Divide the region radially

|∇( 1
|x |d−1 ∗ρ)|®∇
∫

|x−y|<Ra

+∇
∫

Ra≤|x−y|<Rb

+∇
∫

Rb≤|x−y|
.

For the first integral,
∫

|y|<Ra

∇ρ(x − y)
|y|d−1

d y ≤ ‖∇ρ‖∞

∫

|y|<Ra

1
|y|d−1

d y

' ‖∇ρ‖∞

∫ Ra

0

1 dr = Ra‖∇ρ‖∞.
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For the second integral,
∫

Ra≤|x−y|<Rb

ρ(y)
|x − y|d

d y ≤ ‖ρ‖∞

∫

Ra≤|x−y|<Rb

1
|x − y|d

d y

' ‖ρ‖∞

∫ Rb

Ra

1
r

dr = (log Rb
Ra
)‖ρ‖∞.

For the third integral,
∫

Rb≤|x−y|

ρ(y)
|x − y|d

d y ≤ R−d
b ‖ρ‖1.

Thus,
|∇( 1
|x |d−1 ∗ρ)|® Ra‖∇ρ‖∞ + (log Rb

Ra
)‖ρ‖∞ + R−d

b ‖ρ‖1.

Assuming ρ is nonzero so that ‖∇ρ‖∞ > 0, let Ra =min{1,‖∇ρ‖−1
∞} and Rb = 1. Since

log 1
Ra
≤ log+ ‖∇ρ‖∞ and Ra ® ‖∇ρ‖∞,

we have
‖∇( 1

|x |d−1 ∗ρ)‖∞ ® 1+ ‖ρ‖∞ log+ ‖∇ρ‖∞ + ‖ρ‖1.

1.2 Characteristics and volume preservation

The Vlasov-Poisson equation is quite hyperbolic. What we mean here is that the method of characteristic
curves is useful, and it does not regularize the solution directly. Although we do not have an explicit
representation formula, solutions written by characteristic curves make appropriate estimates possible.

Moreover, since the Vlasov-Poisson system is a Hamiltonian system on the phase space R3
x × R

3
v

with the Hamiltonian H(x , v) = 1
2 v2 + γΦ(x , v), it has the volume preserving propoerty. We, how-

ever, will show the volume preservation by computation of the Jacobian determinant for coordinates
transformations through characteristic flows.

Lemma 1.3. Let f ∈ C1([0, T]; C1
c (R

6)) be a classical solution of the Vlasov-Poisson system.

(a) Fix t, x , v. The system of ordinary differential equations










Ẋ (s; t, x , v) = V (s; t, x , v),

V̇ (s; t, x , v) = γE(s, X (s; t, x , v)),

X (t; t, x , v) = x , V (t; t, x , v) = v,

where the dot symbol denote the time derivative d
ds , has a solution (X , V ) in C1([0, T],R6).

(b) Fix t, x , v. Then, f (s, X (s; t, x , v), V (s; t, x , v)) = const.

(c) Fix t, and let
y(s; x , v) := X (s; t, x , v) and w(s; x , v) := V (s; t, x , v).

Then, the Jacobian of coordinates transform (x , v) 7→ (y, w) is 1 for all s.

Proof. (a) Note that we have

ρ ∈ C1([0, T]; C1
c (R

6)), Φ ∈ C1([0, T]; C2,α(R6))

so that
E ∈ C1([0, T]; C1,α(R6))

by the Hölder regularity of the Poisson equation. Since a map

(x , v) 7→ (v,γE(t, x))
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is globally Lipschitz with respect to (x , v) for each t, we can apply the Picard-Lindelöf theorem.
(b) Differentiate and use the chain rule to get

d
ds

f (s, y(s), w(s))

= ∂t f (s, y, w) + Ẋ (s; s, y, w) · ∇x f (s, y, w) + V̇ (s; s, y, w) · ∇v f (s, y, w)

= ∂t f (s, y, w) +w · ∇x f (s, y, w) + γE(s, y) · ∇v f (s, y, w) = 0,

where we denote y(s) = X (s; t, x , v) and w(s) = V (s; t, x , v).
(c) Let J(s) = ∂ (y(s),w(s))

∂ (x ,v) be the Jacobi matrix. Because when s = t the Jacobian is

det J(t) = det
∂ (x , v)
∂ (x , v)

= 1,

we want to show
det J(s) = const .

Since

J−1(s)
d
ds

J(s) =
∂ (x , v)

∂ (y(s), w(s))
d
ds
∂ (y(s), w(s))
∂ (x , v)

=
∂ ( ẏ(s), ẇ(s))
∂ (y(s), w(s))

=
∂ (w(s),γE(s, y(s)))
∂ (y(s), w(s))

=

�

0 1
γ ∂ E
∂ y (s, y(s)) 0

�

,

the Jacobi formula deduces that

d
ds

det J(s) = det(s) tr
�

J−1(s)
d
ds

J(s)
�

= 0.

Corollary 1.4. Let f ∈ C1([0, T]; C1
c (R

6)) be a classical solution of the Cauchy problem for the Vlasov-
Poisson system. Then, for any measurable function β : R→ R such that

∫∫

β ◦ f0(x , v) dv d x <∞, we
have

∫∫

β ◦ f (t, x , v) dv d x = const .

In particular,
‖ f (t)‖p = const

for 1≤ p ≤∞.

Proof. Fix t, s ∈ [0, T] and denote y = X (s; t, x , v) and w= V (s; t, x , v). Then,
∫∫

β ◦ f (t, x , v) dv d x =

∫∫

β ◦ f (s, y(s), w(s)) dv d x

=

∫∫

β ◦ f (s, y, w) dw d y

for s ≤ T .

To sum up our weapons obtained so far, we have the following.

Corollary 1.5. If a function f ∈ C1([0, T], C1
c (R

6)) satisfies
∫∫

f (t, x , v) dv d x = const,

and if we let

ρ(t, x) =

∫

f (t, x , v) dv, E(t, x) =
1

4π

∫

(x − y)ρ(t, y)
|x − y|3

d y,

then
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(a) ‖ρ(t)‖1 = const,

(b) ‖E(t)‖∞ ® ‖ρ(t)‖2/3∞ ,

(c) ‖∇E(t)‖∞ ® 1+ ‖ρ‖∞ log+ ‖∇ρ‖∞.

These estimates will be applied not only to the global existence proof, which assumes the local
existence, but also to approximate solutions.

Remark. Note that the volume preservation is also yielded for a approximation scheme, which will be
suggested in the next section, hence the same results in Corollary 1.4 for the approximate solutions in
the same manner. The proof will be omitted.

1.3 Conservation laws and moment propagation

Usual algebraic computations with Stokes’ theorem get several conservations laws, particularly includ-
ing energy conservation.

Lemma 1.6. Let f be a classical solution of the Vlasov-Poisson system.

(a) (Continuity equation)

ρt +∇x · j = 0, where j =

∫

v f dv.

(b) (Energy conservation)
∫∫

|v|2 f dv d x + γ

∫

|E|2 d x = const .

Proof. (a) Integrate with respect to v to get

0=

∫

ft dv +

∫

v · ∇x f dv

= ρt +∇x ·
∫

v f dv

= ρt +∇x · j.

(b) Multiply |v|2 and integrate with respect to v and x to get

d
d t

∫∫

|v|2 f dv d x =

∫∫

|v|2 ft dv d x = −
∫∫

|v|2γE · ∇v f dv d x

=

∫∫

2v · γE f dv d x = −2γ

∫

∇xΦ · j d x

= 2γ

∫

Φ∇x · j d x = 2γ

∫

Φ∆xΦt d x

= −
d
d t
γ

∫

|E|2 d x .

Thus
∫∫

|v|2 f dv d x + γ

∫

|E|2 d x = const .

Kinetic energy is a type of quantities which are called moments; we call the quantities of the form
∫∫

|v|k f (t, x , v) dv d x

6



moments, with a positive real k. The energy conservation proves the bound of the 2-moment, kinetic
energy,

∫∫

|v|2 f (t, x , v) dv d x ® 1

if γ = +1. In fact, a bound of kinetic energy exists even for γ = −1. As a corollary, the L5/3 norm of
mass density ‖ρ‖5/3 gets bounded.

Lemma 1.7 (Bound for kinetic energy). Let f ∈ C1([0, T], C1
c (R

6)) be a solution of the Vlasov-Poisson
system. For t ∈ [0, T],

(a) ‖ρ(t)‖5/35/3 ®
∫∫

|v|2 f dv d x.

(b)
∫∫

|v|2 f dv d x ® 1.

Proof. (a) Note

ρ(t, x) =

∫

f (t, x , v) dv ≤
∫

|v|<R

f dv +
1
R2

∫

|v|≥R

|v|2 f dv

® R3 + R−2

∫

|v|2 f dv.

Set R3 = R−2
∫

|v|2 f dv to get

ρ(t, x)5/3 ®
∫

|v|2 f dv.

(b) It is trivial for γ= +1 from the energy conservation. Suppose γ= −1. By the Hardy-Littlewood-
Sobolev inequality,

1
p
+
α

d
=

1
q

for p = 2, d = 3, and α= 1 implies q = 6/5, hence the bound of ‖E(t)‖2

‖E(t)‖2 ' ‖
1
|x |d−α

∗x ρ(t, x)‖L2
x
® ‖ρ(t)‖6/5.

So, interpolation with Hölder’s inequality gives

‖E(t)‖2 ® ‖ρ(t)‖
7/12
1 ‖ρ(t)‖

5/12
5/3 ' ‖ρ(t)‖

5/12
5/3 .

Thus (1) gives
∫∫

|v|2 f dv d x = c + ‖E(t)‖22 ® c + (

∫∫

|v|2 f dv d x)1/2,

so the kinetic energy
∫∫

|v|2 f dv d x is bounded.

Remark. If we had a bound of higher moment
∫∫

|v|k f (t, x , v) dv d x ® 1

for some k > 6 so that ‖ρ(t)‖p ® 1 for some p = k+3
3 > 3, then we would obtain

‖E(t)‖
1− 1

p
∞ ® ‖ρ(t)‖

2
3
p ‖ρ(t)‖

1
3−

1
p

1 ® 1.

We will see that this estimate proves the global existence immediately; this is the idea of the paper of
Lions and Perthame [2]. We do not cover this in detail.
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2 Local existence

The proof of local existence follows the following steps:

(a) construction of an approximate solution,

(b) establishment of estimates,

(c) (subsequential) convergence of the approximate solution,

(d) verification of the solvability for the limit.

The Vlasov-Poisson system is good enough that we can show the usual convergence of approximate
solutions, not in the sense of subsequences.

2.1 Approximate solution

Definition 2.1. We define an (global) approximate solution as a sequence of functions fn ∈ C1(R+; C1
c (R

6))
such that















































∂t fn+1 + v · ∇x fn+1 + γEn · ∇v fn+1 = 0,

En(t, x) = −∇xΦn,

Φn(t, x) =

∫

ρn(y)
|x − y|

d y,

ρn(t, x) =

∫

fn dv,

fn+1(0, x , v) = f0(x , v).

This definition is made in order to let the force field E constant when solving fn+1. Note that it assumes
for f0 to be automatically C1

c by definition.

Proposition 2.1. An approximate solution exists for given initial term f0 ∈ C1
c (R

6).

Proof. Let f0(t, x , v) = f0(x , v). Notice that f0 is clearly in C1(R+; C1
c (R

6)). Assume fn ∈ C1(R+; C1
c (R

6))
satisfies the approximate system. We want to show that there is fn+1 that satisfies the approximate sys-
tem and fn+1 ∈ C1(R+; C1

c (R
6)).

We have for 0< α < 1 that

ρn ∈ C1(R+; C1
c (R

6)), Φn ∈ C1(R+; C2,α(R6)), and En ∈ C1(R+; C1,α(R6))

by the Hölder regularity of the Poisson equation. Since a map (x , v) 7→ (v,γEn(t, x)) is globally Lipschitz
with respect to (x , v) for each t, the classical Picard iteration uniquely solves the characteristic equation

¨

Ẋn+1(s; t, x , v) = Vn+1(s, t, x , v)

V̇n+1(s; t, x , v) = γEn(s, Xn+1(s; t, x , v))

with condition (Xn+1(t; t, x , v), Vn+1(t; t, x , v)) = (x , v), and proves the uniqueness and regularity of
the solution s 7→ (Xn+1, Vn+1)(s; t, x , v) ∈ C1(R+,R6).

Define
fn+1(t, x , v) := f0(Xn+1(0; t, x , v), Vn+1(0; t, x , v)).

Then, fn+1 is clearly C1, and we can show that

fn+1(s, Xn+1(s; t, x , v), Vn+1(s; t, x , v))

= f0(Xn+1(0; t, x , v), Vn+1(0; t, x , v)) = const

8



and that fn+1 satisfies the approximate system by the chain rule

0=
d
ds

fn+1(s, Xn+1(s; t, x , v), Vn+1(s; t, x , v))

�

�

�

�

s=t

= ∂t fn+1(t, x , v) + Ẋn+1(t; t, x , v) · ∇x fn+1(t, x , v) + V̇n+1(t; t, x , v) · ∇v fn+1(t, x , v)

= ∂t fn+1(t, x , v) + v · ∇x fn+1(t, x , v) + γEn(t, x) · ∇v fn+1(t, x , v).

Also, fn+1 has compact support for each t since the characteristic does not blow up; finally we have
fn+1 ∈ C1(R+, C1

c (R
6)).

Remark. Although the approximate solution is unique when given the initial term f0(t, x , v) = f0(x , v),
we do not care of its uniqueness, but only the existence.

In this section, we fix an approximate solution fn.

2.2 Local estimates on approximate solutions

Recall that the characteristic curves of fn are solutions of the system

¨

Ẋn+1(s; t, x , v) = Vn+1(s; t, x , v)

V̇n+1(s; t, x , v) = γEn(s, Xn+1(s; t, x , v)).

Firstly, the volume preserving property still holds for our approximate system. Therefore, we have

‖ρn(t)‖1 = const, ‖ fn(t)‖p = const .

Next, we prove local-time bounds on fields En and its spatial derivative ∇x En. The bounds crucially
act in the proof of convergence of fn. Note that ∇x En is a gradient of a vector field En, which is 9-
dimensional. Introduce the following quantity.

Definition 2.2. Define the velocity support or maximal velocity by

Qn(t) := sup{ |v| : ∃s ∈ [0, t], fn(s, x , v) 6= 0 }

= sup{ |Vn(s; 0, x , v)| : s ∈ [0, t], f0(x , v) 6= 0 }.

In particular, Q0 is independent on t.

Lemma 2.2. Let T > 0 be a constant such that

T < (Q0‖ f0‖2/3∞ ‖ f0‖
1/3
1 )
−1.

Then, we have the following bounds:

(a) For t ≤ T,
‖ρn(t)‖∞ + ‖En(t)‖∞ +Qn(t)® 1

independently on n. In addition, the position support |Xn(t; 0, x , v)| is also uniformly bounded in
time t ≤ T.

(b) For t ≤ T,
‖∇xρn(t)‖∞ + ‖∇x En(t)‖∞ ® 1

independently on n.
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The control mechanism among uniform norms of each quantity including ρ and E can be summa-
rized as follows:

log‖E(t)‖∞ log‖ρ(t)‖∞ logQ(t),®

Elliptic regularity of
Poisson’s eqn

®

and

Q(t) |(X , V )(t)|
∫ t

0 (1+ ‖E(s)‖∞) ds.®

By def

®

Equations of
characteristics

Then, Gronwall’s inequality saves the game for the bound of Q. Also, we can observe that all functions
in here are controlled by the velocity support Q. For detail explanations, see the following proof.

Proof. (a) Since
‖ρn(t)‖∞ ≤Q3

n(t)‖ f0‖∞,

a rough estimate for ‖E‖∞ gives

‖En(t)‖∞ ≤ ‖ρn(t)‖2/3∞ ‖ρn(t)‖
1/3
1 ≤Q2

n(t)‖ f0‖2/3∞ ‖ f0‖
1/3
1 .

Let c( f0) := ‖ f0‖2/3∞ ‖ f0‖
1/3
1 so that ‖En(t)‖ ≤ cQ2

n(t) and cQ0 t < 1 for t ≤ T . We claim that if t ≤ T ,
then

Qn(t)≤
Q0

1− cQ0 t

for all n. Easily checked for n= 0; Q0(t)≡Q0 ≤Q0/(1− cQ0 t).
Assume Qn(t)≤

Q0
1−cQ0 t for t ≤ T . Let f0(x , v) 6= 0. Then,

|Vn+1(t; 0, x , v)|=
�

�

�v +

∫ t

0

γEn(s, Xn+1(s; 0, x , v)) ds
�

�

�

≤ |v|+
∫ t

0

‖En(s)‖∞ ds

≤Q0 + c

∫ t

0

Q2
n(s) ds

leads to

Qn+1(t)≤Q0 + c

∫ t

0

Q2
n(s) ds ≤Q0 + c

∫ t

0

�

Q0

1− cQ0s

�2

ds =
Q0

1− cQ0 t
.

By induction, Qn(t)≤
Q0

1−cQ0 t ® 1 for all n and t ≤ T . Furthermore,

‖ρn(t)‖∞ ®Q3
n(t)® 1, ‖En(t)‖∞ ®Q2

n(t)® 1.

The position support is bounded because

|Xn(t; 0, x , v)| ≤ |x |+
∫ t

0

|Vn(s; 0, x , v)| ds ≤ |x |+ TQn(t)® 1.

(b) Since we already have bounds for ‖ρn‖∞ and ‖ρn‖1, what we should estimate in order to bound
‖∇x En‖∞ is ∇xρn. To do this, we will consider ∇x Xn and ∇x Vn. In particular, we have

∇x Xn(t; t, x , v) =∇x x = (1,0, 0 ; 0,1, 0 ;0, 0,1),

∇x Vn(t; t, x , v) =∇x v = 0.

10



Two inequalities

|∇x Xn+1(s; t, x , v)|=
�

�

�(1,0, · · · , 0, 1)
︸ ︷︷ ︸

9

−
∫ t

s

∇x Vn+1(s
′; t, x , v) ds′
�

�

�

≤
p

3+

∫ t

s

|∇x Vn+1(s
′; t, x , v)| ds′

and

|∇x Vn+1(s; t, x , v)|= |
∫ t

s

∇x[En(s
′, Xn+1(s

′; t, x , v))] ds′|

≤
∫ t

s

|∇x Xn+1(s
′; t, x , v)| · ‖∇x En(s

′)‖∞ ds′

are combined as

|∇x Xn+1(s; t, x , v)|+ |∇x Vn+1(s; t, x , v)|

≤
p

3+

∫ t

s

(1+ ‖∇x En(s
′)‖∞)(|∇x Xn+1(s

′; t, x , v)|+ |∇x Vn+1(s
′; t, x , v)|) ds′.

By the Gronwall inequality, we get

|∇x Xn+1(s; t, x , v)|+ |∇x Vn+1(s; t, x , v)| ≤
p

3 e
∫ t

s (1+‖∇x En(s′)‖∞) ds′

for 0≤ s ≤ t. Thus we have

|∇xρn+1(t, x)|= |
∫

∇x[ f0(Xn+1(0; t, x , v), Vn+1(0; t, x , v))] dv|

≤ ‖∇x ,v f0‖∞

∫

(|∇x Xn+1(0; t, x , v)|+ |∇x Vn+1(0; t, x , v)|) dv

® ‖∇x ,v f0‖∞Q3
n+1(t) · e
∫ t

0 (1+‖∇x En(s)‖∞) ds

so that
‖∇xρn+1(t)‖∞ ® e

∫ t
0 (1+‖∇x En(s)‖∞) ds.

Recall that

‖∇x En+1(t)‖∞ ® (1+ ‖ρn+1(t)‖∞ log+ ‖∇xρn+1(t)‖∞ + ‖ρn+1(t)‖1)

® 1+ log+ ‖∇xρn+1(t)‖∞

for t ≤ T . By inserting the estimate for ‖∇xρn+1(t)‖∞, we can find a constant c = c( f0) such that

1+ ‖∇x En+1(t)‖∞ ≤ c[1+

∫ t

0

(1+ ‖∇x En(s)‖∞) ds]

in t ≤ T , where T < (Q0‖ f0‖2/3∞ ‖ f0‖
1/3
1 )
−1. Without loss of generality, we may assume that the constant

c satisfies
sup

s∈[0,T]
(1+ ‖∇x E0(s)‖∞)≤ c.

Then, induction obtains the bound

1+ ‖∇x En(t)‖∞ ≤ cec t ≤ cecT ® 1

for all n and t ≤ T .
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2.3 Convergence of approximate solution

Although most of the nonlinear systems fail to have convergent approximate solutions so that compact-
ness methods are often applied, the approximate solutions constructed and investigated in the previous
subsections uniformly converges.

Lemma 2.3. Let T > 0 be a constant such that

T < (Q0‖ f0‖2/3∞ ‖ f0‖
1/3
1 )
−1.

(a) For t ≤ T and n≥ 1,

‖ fn+1(t)− fn(t)‖∞ ®
∫ t

0

‖En(s)− En−1(s)‖∞ ds.

(b) For s ≤ T and n≥ 1,
‖En(s)− En−1(s)‖∞ ® ‖ fn(s)− fn−1(s)‖∞.

(c) fn converges to a function f uniformly in C([0, T]×R6).

(d) For each t, x , v, a sequence of maps

s 7→ (Xn(s; t, x , v), Vn(s; t, x , v))

converges in C1([0, T],R6) so that its limit (X , V ) satisfies the equations

Ẋ (s; t, x , v) = V (s; t, x , v), V̇ (s; t, x , v) = γE(s, X (s; t, x , v)),

where

E(t, x) =
1

4π

∫∫

(x − y) f (t, y, v)
|x − y|3

dv d y.

Proof. (a) Denote

g(s) := |Xn+1(s; t, x , v)− Xn(s; t, x , v)|+ |Vn+1(s; t, x , v)− Vn(s; t, x , v)|

for given t, x , v. The C1 regularity of f0 gives

| fn+1(t, x , v)− fn(t, x , v)|= | f0(Xn+1(0; t, x , v), Vn+1(0; t, x , v))− f0(Xn(0; t, x , v), Vn(0; t, x , v))|

® |Xn+1(0; t, x , v)− Xn(0; t, x , v)|+ |Vn+1(0; t, x , v)− Vn(0; t, x , v)|

= g(0).

If an inequality

sup
s∈[0,t]

g(s)®
∫ t

0

‖En(s)− En−1(s)‖∞ ds

is obtained, whose right-hand side does not depend on x nor v, then we are done.
Let 0≤ s ≤ t ≤ T . Because

Xn(s; t, x , v) = x −
∫ t

s

Vn(s
′; t, x , v) ds′,

Vn(s; t, x , v) = v −
∫ t

s

γEn−1(s
′, Xn(s

′; t, x , v)) ds′,

12



we have two inequalities

|Vn+1(s; t, x , v)− Vn(s; t, x , v)| ≤
∫ t

s

|En(s
′, Xn+1(s

′; t, x , v))− En−1(s
′, Xn(s

′; t, x , v))| ds′

≤
∫ t

s

(|En(s
′, Xn+1)− En(s

′, Xn)|+ |En(s
′, Xn)− En−1(s

′, Xn)|) ds′

≤
∫ t

s

(‖∇x En(s
′)‖∞|Xn+1(s

′)− Xn(s
′)|+ ‖En(s

′)− En−1(s
′)‖∞) ds′

and

|Xn+1(s; t, x , v)− Xn(s; t, x , v)| ≤
∫ t

s

|Vn+1(s
′; t, x , v)− Vn(s

′; t, x , v)| ds′

for s ∈ [0, t]. By combining the two inequalities above, we get

g(s)≤
∫ t

s

a(s′)g(s′) ds′ +

∫ t

s

‖En(s
′)− En−1(s

′)‖∞ ds′, (2)

where a(s) := 1+ ‖∇x En(s)‖∞.
Here we use a Gronwall-type inequality to bound g(s). In more detail, multiplying

a(s)e−
∫ t

s a(s′)ds′

on the both-hand-side of (2), and using a ® 1 in t ≤ T , we have

−
d
ds

�

e−
∫ t

s a(s′) ds′
∫ t

s

a(s′)g(s′) ds′
�

≤ a(s)e−
∫ t

s a(s′)ds′
∫ t

s

‖En(s
′)− En−1(s

′)‖∞ ds′

®
∫ t

s

‖En(s
′)− En−1(s

′)‖∞ ds′

Integrate from s to t and bound (t − s)≤ T ® 1 to get

e−
∫ t

s a(s′) ds′
∫ t

s

a(s′)g(s′) ds′ ®
∫ t

s

‖En(s
′)− En−1(s

′)‖∞ ds′. (3)

Since e
∫ t

s a(s′) ds′ ≤ eT sups∈[0,t] a(s) ® 1, the inequalities (2) and (3) implies

g(s)®
∫ t

0

‖En(s
′)− En−1(s

′)‖∞ ds′ (4)

for arbitrary s ∈ [0, t].
(b) Notice that

‖En(t)− En−1(t)‖∞ ® ‖ρn(t)−ρn−1(t)‖
1/3
1 ‖ρn(t)−ρn−1(t)‖2/3∞ .

For L∞-norm,

‖ρn(t)−ρn−1(t)‖∞ ≤max{Q3
n(t),Q

3
n−1(t)}‖ fn(t)− fn−1(t)‖∞ ® ‖ fn(t)− fn−1(t)‖∞.

For L1-norm, since the support of fn, fn−1 is bounded in both directions x , v in finite time,

‖ρn(t)−ρn−1(t)‖1 ≤ ‖ fn(t)− fn−1(t)‖1 ® ‖ fn(t)− fn−1(t)‖∞

for t ≤ T , where T <∞ arbitrary.
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(c) From (a) and (b), there is a constant c = c( f0) such that,

‖ fn+1(t)− fn(t)‖∞ ≤ c

∫ t

0

‖ fn(s)− fn−1(s)‖∞ ds.

We can easily get with induction

‖ fn+1(t)− fn(t)‖∞ ≤ M
(c t)n

n!
,

where M = sups∈[0,T] ‖ f1(s)− f0(s)‖∞. Therefore,

∞
∑

n=0

‖ fn+1 − fn‖∞ ≤ sup
t∈[0,T]

Mec t <∞

implies fn uniformly converges in C([0, T]×R6).
(d) Write

Xn(s) = Xn(s; t, x , v), Vn(s) = Vn(s; t, x , v)

for given t, x , v. Recall that g measures the difference between (Xn+1, Vn+1) and (Xn, Vn). By the in-
equality (4) and the result in (b),

sup
s∈[0,T]

g(s)®
∫ T

0

‖En(s)− En−1(s)‖∞ ® T‖ fn − fn−1‖∞.

Then, the uniform convergence of characteristics (Xn, Vn) is clear by the absolute convergence of the
series
∑

‖ fn+1 − fn‖∞.
Also for the uniform convergence of (Ẋn, V̇n), it is proved by the absolute convergence of the series
∑

‖ fn+1 − fn‖∞ since

‖Ẋn+1 − Ẋn‖∞ = ‖Vn+1 − Vn‖∞,

‖V̇n+1 − V̇n‖∞ ≤ ‖∇x En‖∞‖Xn+1 − Xn‖∞ + ‖En − En−1‖∞,

yielding
‖Ẋn+1 − Ẋn‖∞ + ‖V̇n+1 − V̇n‖∞ ® ‖ fn − fn−1‖∞.

Then, by limiting the both-hand-side of equations

Ẋn(s) = Vn(s), V̇n(s) = γEn−1(s, Xn(s)),

we easily get
Ẋ (s) = V (s), V̇ (s) = γE(s, X (s)).

Theorem 2.4 (Local existence). Let fn be an approximate solution. Then, there is a constant T = T ( f0)>
0 be a constant such that the limit f of fn is a classical solution of the Cauchy problem for the Vlasov-Poisson
system with time domain [0, T].

Proof. Take T such that T < (Q0‖ f0‖2/3∞ ‖ f0‖
1/3
1 )
−1. Let X (s; t, x , v) and V (s; t, x , v) be the limits of

Xn(s; t, x , v) and Vn(s; t, x , v) for given t, x , v. Notice that

f (t, x , v) = lim
n→∞

fn(t, x , v) = lim
n→∞

f0(Xn(0; t, x , v), Vn(0; t, x , v)) = f0(X (0; t, x , v), V (0; t, x , v)),

which shows f is C1 since f0 and (X , V ) are C1. We can check it solves the system by expand the
right-hand-side of

0=
d
ds

f (s, X (s; t, x , v), V (s; t, x , v))|s=t

using the chain rule. The compact support is by the fact that characteristic curves do not blow up.
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2.4 Uniqueness

Theorem 2.5 (Uniqueness). Suppose f1, f2 ∈ C1([0, T]; C1
c (R

6)) are classical solutions of the Cauchy
problem for the Vlasov-Poisson system with a common initial data f0. Then, f1 = f2.

Proof. As we did in (a) and (b) of Lemma 2.3, we can obtain

‖ f1(t)− f2(t)‖∞ ®
∫ t

0

‖ f1(s)− f2(s)‖∞ ds

for t ≤ T . By the Gronwall lemma, we get
∫ t

0

‖ f1(s)− f2(s)‖∞ ≤ 0.

2.5 Prolongation criterion

We give in this last subsection a sufficient condition for a local classical solution f to be global.

Definition 2.3. Let f ∈ C1([0, T]; C1
c (R

6)). Define for t ∈ [0, T]

Q(t) := sup{ |v| : ∃s ∈ [0, t], f (s, x , v) 6= 0 }.

Proposition 2.6. Let f ∈ C1([0, T]; C1
c (R

6)) be a classical solution of the Cauchy problem for the Vlasov-
Poisson system. If Q(T )<∞, then f is continued to a classical solution with a longer time interval.

Proof. We are going to apply the local existence result for a new problem, in which we write ef for the
solution, with initial condition ef (0, x , v) := f (t0, x , v) for some t0 < T . In Section 2.3, we have shown
the length of time interval for existence T is given by the condition

T < (Q0‖ f0‖2/3∞ ‖ f0‖
1/3
1 )
−1.

It means that, if we arrange it for the new solution ef , the interval of existence of ef has in fact a lower
bound eT > 0 that depends only on Q(T ) for any new initial time t0; it is because the monotonicity of Q
says Q(T )−1 <Q(t0)−1 and the volume preservation implies ‖ f0‖∞ = ‖ f (t0)‖∞ and ‖ f0‖1 = ‖ f (t0)‖1.
In other words, we can take any eT such that

eT < (Q(T )‖ f0‖2/3∞ ‖ f0‖
1/3
1 )
−1.

Note that the bound does not depend on t0 but only on its upper bound T .
Set t0 = T − 1

2
eT so that t0 < T < t0 + eT . Then, we can construct a new solution in C1([0, t0 +

eT], C1
c (R

6)) by pasting solutions f ∈ C1([0, T], C1
c (R

6)) and ef ∈ C1([t0, t0 + eT], C1
c (R

6)).

Corollary 2.7. If the classical solution f ∈ C1([0, T]; C1
c (R

6)) with a given initial data f0 ∈ C1
c (R

6)
satisfies Q(t)≤ h(t) in t ≤ T for a continuous function h : [0,∞)→ [0,∞), then Theorem 1.1 is true.

Proof. Suppose f ∈ C1([0, Tmax); C1
c (R

6)) for Tmax < ∞ is the maximal solution with initial data
f0. Since Q is bounded on [0, Tmax], we can apply the previous proposition, which contradicts to the
maximality of Tmax. Hence Tmax =∞, and the solution f is prolonged forever.

3 Global existence

Theorem (Schaeffer, 1991). Let f0 ∈ C1
c (R

6, [0,∞)) and p > 33
17 . The classical solution f ∈ C1([0, T]; C1

c (R
6))

of the Cauchy problem for the Vlasov-Poisson system with an initial data f0 has a constant c = c( f0, p)
such that

Q(t)≤ c(1+ t)p

for all t ≤ T.
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3.1 Time averaging

Fix a (local) classical solution f . If we had an integral inequality of the form

Q(t)−Q(t −∆)®
∫ t

t−∆
Q(s)a ds

for some constant 0≤ a ≤ 1, then we would be able to prove that

Q(t)®

(

(1+ t)
1

1−a , 0≤ a < 1

ec t , a = 1
(5)

using the nonlinear Gronwall lemma. To obtain this integral inequality, we may try as follows: if we
got an estimate on the field

‖E(t)‖∞ ®Q(t)a,

then for any fixed t, px , pv such that f (t, px , pv) 6= 0 and for any ∆> 0 we have

|pv − V (t −∆; t, px , pv)|= |
∫ t

t−∆
γE(s, X (s; t, px , pv)) ds|®

∫ t

t−∆
Q(s)a ds,

so there would be a constant c = c( f0) such that

|pv| ≤ |V (t −∆; t, px , pv)|+ c

∫ t

t−∆
Q(s)a ds ≤Q(t −∆) + c

∫ t

t−∆
Q(s)a ds,

which deduces

Q(t)≤Q(t −∆) + c

∫ t

t−∆
Q(s)a ds.

However, an optimized modification of the estimate in (a) of Lemma 1.2 that uses ‖ρ(t)‖5/3 ® 1
only gives the large exponent

‖E(t)‖∞ ® ‖ρ(t)‖4/9∞ ‖ρ(t)‖
5/9
5/3 ® (Q(t)

3)4/9 · 15/9 =Q(t)4/3,

so we need another approach for suppression of the exponent 4/3 down to 1. Our strategy is to average
in the time direction. Precisely, we estimate the averaged field

1
∆

∫ t

t−∆
|E(s, X (s; t, px , pv))| ds ®Q(t)a

for arbitrary t, px , pv and for suitably chosen ∆. Then, we would get a weaker inequality

Q(t)−Q(t −∆)®∆ ·Q(t)a,

which is also able to deduce (5). The detailed proof of (5) will be presented in Section 3.4.

Notation. Fix (t, px , pv) ∈ R+ ×R6. We will write

pX (s) := X (s; t, px , pv) and pV (s) := V (s; t, px , pv).

Also, we will use the notations

X (s) := X (s; t, x , v) and V (s) := V (s; t, x , v),

where x , v are usually used in integration variable. Symbols y and w are always used for X (s) and V (s)
at time s especially when applying volume preserving coordinates transformation (x , v) 7→ (X (s), V (s)) =
(y, w).
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Now, our ultimate goal is to bound the integral
∫ t

t−∆
|E(s, pX (s))| ds ≤

1
4π

∫ t

t−∆

∫∫

f (s, y, w)

|y − pX (s)|2
dw d y ds

=
1

4π

∫ t

t−∆

∫∫

f (t, x , v)

|X (s)− pX (s)|2
dv d x ds

by velocity. The main difficulty of this integral is that |y − pX (s)|−2 is not integrable with respect to y
on the region where |y| is large; the inverse square has too slow decay rate to be integrable in three-
dimesional space R3.

We want to find a lower bound of the relative position vector |X (s) − pX (s)| assuming it is large.
When the distance between X (s) and pX (s) is sufficiently large so that the interaction between particles
at positions X (s) and pX (s) is sufficiently weak, the distance will change almost linearly in both velocity
and time by their inertia. Intuitively, we can write

|X (s)− pX (s)| � 1 =⇒ X (s)− pX (s)≈ (v − pv)(s− c1) + c2,

where c1, c2 are constants that depend on (t, x , v, px , pv).
Then, here the time averaging plays its role: interchange the integral as follows using the Tonelli

theorem:
∫ t

t−∆

∫∫

f (t, x , v)

|X (s)− pX (s)|2
dv d x ds =

∫∫

f (t, x , v)

�∫ t

t−∆

ds

|X (s)− pX (s)|2

�

dv d x .

The time integration of |X (s)− pX (s)|−2 ≈ |(v−pv)(s− c1)+ c2|−2 on a set {s : |(v−pv)(s− c1)+ c2| ≥ r} for
a proper spatial radius r approximately cannot exceed (|v − pv|r)−1. It means that the singularity issue
of a spatial function is changed to an estimate problem for a function of velocity. Finally by taking r
such that (|v− pv|r)−1 ® |v|2, it allows that the kinetic energy directly bound the quantity that we want
to control. This idea is embodied in the “ugly set estimate” in Proposition 3.3.

3.2 Lemmas on relative velocity

The following lemma suggests an appropriate way to choose the time averaging interval ∆.

Lemma 3.1. Let P > 0. Suppose s ≤ [t −∆, t], where

∆ · sup
s∈[0,t]
‖E(s)‖∞ ≤

P
4

.

(a) If |v|< P, then |V (s)|< 2P.

(b) If |v| ≥ P, then 1
2 |v| ≤ |V (s)| ≤ 2|v|.

(c) If |v − pv|< P, then |V (s)− pV (s)|< 2P.

(d) If |v − pv| ≥ P, then 1
2 |v − pv| ≤ |V (s)− pV (s)| ≤ 2|v − pv|.

Proof. Note that

|v − V (s)| ≤
∫ t

s

|E(s′, X (s′))| ds′ ≤∆ · sup
s′∈[0,t]

‖E(s′)‖∞ ≤
P
4

,

and similarly

|pv − pV (s)| ≤
P
4

.

For (a),

|V (s)| ≤ |v|+ |v − V (s)|< P +
P
4
< 2P.
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For (b),

|V (s)| ≥ |v| − |v − V (s)| ≥ |v| −
P
4
≥

1
2
|v|

and
|V (s)| ≤ |v|+ |v − V (s)| ≤ |v|+

P
4
≤ 2|v|.

For (c)

|V (s)− pV (s)| ≤ |V (s)− v|+ |v − pv|+ |pv − pV (s)|<
P
4
+ P +

P
4
< 2P.

For (d),

|V (s)− pV (s)| ≥ −|V (s)− v|+ |v − pv| − |pv − pV (s)| ≥ −
P
4
+ |v − pv| −

P
4
≥

1
2
|v − pv|

and
|V (s)− pV (s)| ≤ |V (s)− v|+ |v − pv|+ |pv − pV (s)| ≤

P
4
+ |v − pv|+

P
4
≤ 2|v − pv|.

From now for 0≤∆≤ t, we always assume that it is sufficiently small such that

∆ · sup
s∈[0,t]
‖E(s)‖∞ ≤

P
4

.

Lemma 3.2 (Lower bound of relative position vector). If v satisfies |v−pv| ≥ P, then there is s0 ∈ [t−∆, t]
such that

|X (s)− pX (s)| ≥
1
4
|v − pv||s− s0|

for all s ∈ [t −∆, t] and x ∈ R3.

Proof. Let Z(s) := X (s)− pX (s) be the relative position vector. Then,

Z ′(s) = V (s)− pV (s),

Z ′′(s) = γ[E(s, X (s), V (s))− E(s, pX (s), pV (s))],

so the Taylor expansion at s0 ∈ [t −∆, t] gives

Z(s) =
�

Z(s0) + Z ′(s0)(s− s0)
�

+
�

Z ′′(σ)
2
(s− s0)

2
�

for some σ between s, s0.
Choose

s0 = argmin
s∈[t−∆,t]

|Z(s)|.

If s0 = t or s0 = t−∆, then d
ds |Z(s0)|2 ≤ 0 or d

ds |Z(s0)|2 ≥ 0 respectively. Otherwise, s0 ∈ (t−∆, t), and
d
ds |Z(s0)|2 = 0. Hence

Z(s0) · Z ′(s0)(s− s0) =
1
2

d
ds
|Z(s0)|2(s− s0)≥ 0

for s ∈ [t −∆, t], and
|Z(s0) + Z ′(s0)(s− s0)|2 ≥ |Z ′(s0)(s− s0)|2.

The condition |v − pv| ≥ P implies

|Z ′(s)| ≥
1
2
|v − pv|

for s ∈ [t −∆, t]. Therefore,

|Z(s0) + Z ′(s0)(s− s0)| ≥ |Z ′(s0)(s− s0)| ≥
1
2
|v − pv||s− s0|,
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and

|
Z ′′(σ)

2
(s− s0)

2| ≤ ‖E(t)‖∞(s− s0)
2 ≤ ‖E(t)‖∞∆|s− s0| ≤

P
4
|s− s0| ≤

1
4
|v − pv||s− s0|

yields

|X (s)− pX (s)|= |Z(s)| ≥
1
4
|v − pv||s− s0|.

3.3 Divide and conquer

We estimate the integral of |E(s, pX (s))| by dividing the integral region [t−∆, t]×R6 into three regions
as: for P ≥ 4∆ · sups∈[0,t] ‖E(s)‖∞ and R> 0, define

U := { (s, x , v) : |X (s)− pX (s)| ≥ r, |v − pv| ≥ P },

B := { (s, x , v) : |X (s)− pX (s)|< r, |v − pv| ≥ P, |v| ≥ P },

G := { (s, x , v) : min{|v − pv|, |v|}< P }

= [t −∆, t]×R6 \ (U ∪ B),

where r := R max{|v|−3, |v − pv|−3}. The constants P and R will be determined later. The conditions
|v − pv| ≥ P on U and min{|v − pv|, |v|} ≥ P on B are introduced in order for application of Lemma 3.2
and (b), (d) of Lemma 3.1 respectively.

Proposition 3.3 (Ugly set estimate).
∫∫∫

U

® R−1.

Proof. Write Then,

U = { (s, x , v) : s ∈ [t −∆, t], |v − pv| ≥ P, |X (s)− pX (s)| ≥ r }.

Since |X (s)− pX (s)| ≥ r on U ,
∫

|s−s0|<S

χU(s, x , v)

|X (s)− pX (s)|2
ds ≤

1
r2

∫

|s−s0|<S

ds =
2S
r2

,

and since |v − pv| ≥ P on U so that |X (s)− pX (s)| ≥ 1
4 |v − pv||s− s0| by Lemma 3.2,

∫

|s−s0|≥S

χU(s, x , v)

|X (s)− pX (s)|2
ds ≤ 16

∫

|s−s0|≥S

1
|v − pv|2|s− s0|2

ds = 32
1

|v − pv|2S
.

If we choose S such that 2S/r2 = 32/|v − pv|2S, then we obtain the estimate
∫

χU(s, x , v)

|X (s)− pX (s)|2
ds ®

1
|v − pv|r

.

Then, by the definition of r,

1
|v − pv|r

= R−1 min{|v|3, |v − pv|3}
|v − pv|

≤ R−1|v|2

so that we have
∫∫∫

U

f (t, x , v)

|X (s)− pX (s)|2
dv d x ds =

∫∫

f (t, x , v)

�∫

χU(s, x , v)

|X (s)− pX (s)|2
ds

�

dv d x

® R−1

∫∫

|v|2 f (t, x , v) dv d x ® R−1.
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Proposition 3.4 (Bad set estimate).
∫∫∫

B

®∆ · R log
4Q(t)

P
.

Proof. Because |X (s)− pX (s)|< r in B, we need to find estimates for the union of two regions

|X (s)− pX (s)|< R|v|−3 and |X (s)− pX (s)|< R|v − pv|−3.

If we integrate |X (s) − pX (s)|−2 with respect to y on these regions, then we get integrands |v|−3 and
|v − pv|−3, which has singularities on regions at which |v|, |v − pv| are respectively small and large; an
inverse cubic function is both sharp and broad in three dimensional space R3. Fortunately, the integral
of inverse cube on the region |v| ∼∞ is bounded by Q, and the region |v| ∼ 0 is bounded by P.

For each s ∈ [t −∆, t], we apply the transformation (x , v) 7→ (y, w) = (X (s), V (s)). Since |v| ≥ P
implies

1
2

P ≤ |w| ≤Q(s) and |w| ≤ 2|v|

by Lemma 3.1, we have
∫

|v|≥P

∫

|X (s)−pX (s)|<R|v|−3

f (t, x , v)

|X (s)− pX (s)|2
d x dv

®
∫

1
2 P≤|w|≤Q(s)

∫

|y−pX (s)|<R|V (t;s,y,w)|−3

1

|y − pX (s)|2
d y dw

'
∫

1
2 P≤|w|≤Q(t)

R|V (t; s, y, w)|−3 dw

≤ 8R

∫

1
2 P≤|w|≤Q(t)

|w|−3 dw

' R log
2Q(t)

P
.

Similarly but using |v − pv| ≥ P, we have

1
2

P ≤ |w− pV (s)| ≤ 2Q(s) and |w− pV (s)| ≤ 2|v − pv|,

and
∫

|v−pv|≥P

∫

|X (s)−pX (s)|<R|v−pv|−3

f (t, x , v)

|X (s)− pX (s)|2
d x dv ® R log

4Q(t)
P

.

Therefore,
∫∫∫

B

f (t, x , v)

|X (s)− pX (s)|2
dv d x ds ®∆ · R log

4Q(t)
P

.

Proposition 3.5 (Good set estimate).
∫∫∫

G

®∆ · P4/3.

Proof. As we have done in the bad set estimate, we need to control the integral on the union of two
regions

|v|< P and |v − pv|< P.

We can use (a) and (c) of Lemma 3.1. The coordinates transformation (x , v) 7→ (y, w) = (X (s), V (s))
gives, since |v|< P implies |w|< 2P,

∫∫

|v|<P

f (t, x , v)

|X (s)− pX (s)|2
dv d x ≤
∫

1

|y − pX (s)|2

∫

|w|<2P

f (s, y, w) dw d y.
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If we write ρP(s, y) :=
∫

|w|<2P f (s, y, w) dw, then since its L5/3
y norm is bounded,

∫

ρP(s, y)

|y − pX (s)|2
d y ® ‖ρP(s, y)‖4/9L∞y

· ‖ρP(s, y)‖5/9
L5/3

y
® ((2P)3)4/9 · 15/9 ' P4/3.

Similarly on the region |v − pv|< P,
∫∫

|v−pv|<P

f (t, x , v)

|X (s)− pX (s)|2
dv d x ® P4/3,

so we are done.

3.4 Bound on the velocity support

Finally, with above estimates, we prove that Q does not blow up. We assume that the classical solution
f ∈ C1([0, T ); C1

c (R
6)) is the maximally prolonged solution.

Definition 3.1. Define a function ∆ : [0, T )→ [0,∞) by

∆(t) :=
1

cQ(t)4/3
Q(t)4/11

4
=

1
4c

Q(t)−32/33.

Corollary 3.6. Let c = c( f0)> 0 be a constant such that

‖E(s)‖∞ ≤ cQ(s)4/3

for all s ∈ [0, T]. For t < T such that t −∆(t)> 0, and for any a > 16
33 , we have

Q(t)−Q(t −∆)®a ∆(t) ·Q(t)a.

Proof. Let (d, e) = ( 4
11 , 16

33 ) and

P =Q(t)d and R=Q(t)e(log
4Q(t)

P
)−1/2.

Then, ∆(t) · cQ(t)4/3 = P
4 . Since

∆(t) sup
s∈[0,t]
‖E(s)‖∞ =

P
4
·

sups∈[0,t] ‖E(s)‖∞
cQ(t)4/3

≤
P
4

,

we can use the estimates on U , B, and G :
∫ t

t−∆(t)
|E(s, pX (s))| ds ≤

∫ t

t−∆(t)

∫∫

f (t, x , v)

|X (s)− pX (s)|2
dv d x ds

® R−1 +∆(t)R log
4Q(t)

P
+∆(t)P4/3

'∆(t)
�

Q(t)4/3P−1R−1 + R log
4Q(t)

P
+ P4/3
�

=∆(t)

�

Q(t)4/3−d−e

√

√

log
4Q(t)

P
+Q(t)e
√

√

log
4Q(t)

P
+Q(t)4d/3

�

.

Because d = 4
11 and e = 16

33 satisfy
4
3 − d − e = e = 4

3 d,

we get
∫ t

t−∆
|E(s, pX (s))| ds ®∆(t)Q(t)16/33 log1/2 Q(t)

and the desired result by setting px and pv to be arbitrarily but f (t, px , pv) 6= 0.

21



Remark. We must notice that the lower bound of ∆ is given in this corollary. Suppose ∆ > 0 had no
lower bound. If we define an increasing function

j(z) := e
1

1−a z1−a
,

that is, j is defined as a solution of a differential equation j′(z) = z−a j(z), then the inequality in the
above corollary

Q(t)−Q(t −∆)≤ c∆ ·Q(t)a

with c = c( f0, a) would give

eQ(t)− eQ(t −∆) = j(Q(t))− j(Q(t −∆))

≤ j(Q(t))− j(Q(t)− c∆ ·Q(t)a)

≤ c∆ ·Q(t)a j′(Q(t))

= c∆ · j(Q(t)) = c∆ · eQ(t),

where eQ(t) := j(Q(t)). It derives an inequality including the left lower Dini’s derivative

D−(e
c t
eQ(t))≤ 0,

and this proves eQ(t)≤ eQ(0)ec t , which implies Q(t)®a (1+ t)
1

1−a .
However, unfortuately there is a lower bound for ∆. See the proof of Corollary 3.6, and check that

the lower bound is required:
R−1 ®∆ ·Q(t)4/3P−1R−1.

Thereby, we must use another discrete method to justify Q(t)®a (1+ t)
1

1−a .

Theorem (Schaeffer, 1991, restatement). For 16
33 < a < 1,

Q(t)®a (1+ t)
1

1−a .

Proof. Since

Q(t)−Q(s)≤
∫ t

s

‖E(s′)‖∞ ds′

so that Q is a nondecreasing continuous function that diverges at time T , there is a unique T1 = T1( f0) ∈
(0, T ) such that T1 =Q(T1)−32/33. We have Q(t)≤Q(T1)® 1 for t ≤ T1, so assume t ∈ (T1, T ).

Inductively define a decreasing sequence {t i}i such that

t0 := t, t i+1 := t i −∆(t i).

The differences have a uniform lower bound

t i − t i+1 =∆(t i) =
1
4c

Q(t i)
−32/33 ≥

1
4c

Q(t)−32/33,

so there exists a positive integer n such that 0< tn ≤ T1 < tn−1. By Corollary 3.6, t i−∆(t i)> 0 implies

Q(t i)−Q(t i+1)®a ∆(t i)Q(t i)
a

for i < n. Then,

Q(t)−Q(T1)≤Q(t0)−Q(tn) =
n−1
∑

i=0

(Q(t i)−Q(t i+1))

®a

n−1
∑

i=0

∆(t i) ·Q(t i)
a ≤

n−1
∑

i=0

∆(t i) ·Q(t)a ≤ tQ(t)a

yields
Q(t)®a 1+ tQ(t)a ® (1+ t)Q(t)a.

Therefore, Q(t)® (1+ t)
1

1−a .
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