
Three perspectives on Bochner’s theorem:

from Herglotz representation

to Pontryagin duality

Ikhan Choi

Abstract

Bochner’s theorem states that the set of continuous positive definite functions on a locally compact
abelian group is the image of finite Borel measures on its dual group under the Fourier-Stieltjes trans-
form. This thesis approaches Bochner’s theorem from three different viewpoints; complex analysis,
probability theory, and representation theory. Special cases of Bochner’s theorem will be discussed in
the first two chapters via the Herglotz representation theorem and the Lévy continuity theorem. In
the rest of the thesis, we prove Bochner’s theorem in two ways and also prove the Pontryagin duality
theorem as an application in the representation theory of locally compact abelian groups.
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1 Introduction

1.1 A brief history of Bochner’s theorem

Bochner’s theorem originates from questions about Fourier coefficients and the Fourier transforms of
measures. It describes a necessary and sufficient condition for a sequence or a function to be Fourier
coefficients or a Fourier transform of a measure. More precisely, the results like the following theorems
are examples of Bochner-type theorems:

Theorem 1.1. A function c : Z→ C is positive definite if and only if there is a unique finite regular Borel
measure µ on T= R/2πZ such that

c(k) =

∫ 2π

0

e−ikθ dµ(θ )

for all k ∈ Z.

Theorem 1.2. A continuous function ϕ : R→ C is positive definite if and only if there is a unique finite
regular Borel measure µ on R such that

ϕ(t) =

∫

ei t x dµ(x)

for all t ∈ R.

The concept of positive definite functions first appeared in the problem in the complex function the-
ory, called the Carathéodory coefficient problem. It asks the condition for the power series coefficients
to form an analytic function that maps the open unit disk into the right half plane. Carathéodory [2]
showed in 1907 that one such necessary and sufficient condition would be that the points whose coor-
dinates are given by the power series coefficient of such functions lie in the convex hull of a particular
curve. Toeplitz reformulated in 1911 the geometric condition of Carathéodory into algebraic terms —
namely the positive definiteness of a sequence in his short article [13]. The Herglotz representation
theorem is the most comprehensive result that contains the above two theorems, and relates the prob-
ability measure on the circle group T to the aforementioned positive definite sequences. This result by
Herglotz [5] is considered as the first prototype of Bochner’s theorem.

Mathias [7] defined and studied the basic properties of the positive definite functions on R in 1923.
Around 1925, the Fourier transform of a measure on R began to be studied actively by probabilists
such as Lévy in order to study the weak convergence of probability measures. Recall that a probability
distribution of a real-valued random variable is defined as a probability measure on R. The Fourier
transform of a probability measure with reversed sign on the phase term is called the characteristic
function of the probability measure. According to the Lévy continuity theorem, the pointwise conver-
gence of characteristic functions implies the weak convergence of a sequence of probability measures.
In the celebrated paper [1] published in 1932, Bochner proved that a function on R is a Fourier trans-
form of a finite measure if and only if it is positive definite and continuous, which gave the theorem his
name. See [12] for the further survey about the history of positive definite functions.

Fourier analysis was then extended to abstract groups, and the Banach algebra approaches emerged
in the 1940s. For locally compact abelian groups, Weil, Povzner, and Raikov almost simultaneously gen-
eralized Bochner’s theorem. We introduce a proof of the Pontryagin duality theorem as an application
of Bochner’s theorem, which states the bidual group is isomorphic to the original group. The original
proof by Pontryagin and van Kampen in [11] and [14] uses a different method.

In Chapter 2, we state and prove the Carathéodory coefficient problem and the Toeplitz theorem.
Then, we prove the Herglotz representation theorem, and Theorem 1.1, the Bochner theorem on the
additive group Z, will be proved as its corollary. We also provide a geometric description of the space
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of positive definite sequences. In Chapter 3, we review the theory of weak convergence of probability
measures on R, including the Lévy-Prokhorov metric and the Prokhorov theorem, and prove Bochner’s
theorem using the Lévy continuity theorem. Then, we move to general locally compact abelian groups
in Chapter 4, and suggest two different methods to prove Bochner’s theorem: one direct proof by
Fourier transform, another by using the Gelfand-Naimark-Segal construction. We end by proving the
Pontryagin duality theorem using Bochner’stheorem, which is one of the most famous applications of
Bochner’s theorem.

1.2 Positive definite functions

This section discusses the basic properties and examples of positive definite functions. They will be
used frequently throughout the whole thesis.

Definition 1.1. Let G be a group. A function f : G → C is called positive definite if for each positive
integer n a non-negativity condition

n
∑

k,l=1

f (x−1
l xk)ξkξl ≥ 0

is satisfied for every n-tuple (x1, · · · , xn) ∈ Gn and every vector (ξ1, · · · ,ξn) ∈ Cn.

A function f is positive definite if and only if bilinear forms defined by matrices ( f (x−1
l xk))nk,l=1

for each positive integer n are Hermitian, and positive semi-definite, regardless of any choices of
(x1, · · · , xn) ∈ Gn. We give some several properties and examples of positive definite functions:

Proposition 1.3. Let G be a group with identity e, and let ( fm)∞m=1 be a sequence of positive functions on
G. Then,

(a) f 1 is positive definite. Indeed, f1(x) = f1(x−1).

(b) a f1 is positive definite for a ≥ 0.

(c) f1 + f2 is positive definite.

(d) f1 f2 is positive definite.

(e) | f1(x)| ≤ f1(e) for all x ∈ G.

(f) If the pointwise limit f = limm→∞ fm exists, then f is positive definite.

(g) Let G be a topological group. If f1 is continuous at the e, then it is both-sided uniformly continuous.

Proof. (a) Note 0≤ ξ f (e)ξ implies f (e) ∈ R. Since

0≤
�

1 ξ
�

�

f (e) f (x−1)
f (x) f (e)

��

1
ξ

�

= f (x−1)ξ+ f (e)(1+ |ξ|2) + f (x)ξ,

we have

0= Im( f (x−1)ξ+ f (x)ξ)

= (Re f (x−1)−Re f (x)) Imξ+ (Im f (x−1) + Im f (x))Reξ

for all ξ ∈ C, so f (x) = f (x−1).
(b) and (c) are clear from definition.
(d) It follows from the Schur product theorem, which states that the Hadamard product(compo-

nentwise product) of two positive semi-definite matrices is also positive semi-definite.
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(e) Let f1 = f and write

0≤
�

1 ξ
�

�

f (e) f (x−1)
f (x) f (e)

��

1
ξ

�

= f (e)(1+ |ξ|2) + 2Re( f (x)ξ).

Taking ξ= f (x)/| f (x)| if f (x) 6= 0, we obtain | f (x)| ≤ f (e).
(f) The defining property of positive definite functions is conditioned by finitely many algebraic

operations for each fixed n, (x1, · · · , xn), and (ξ1, · · · ,ξn), so the positive definiteness is preserved by
pointwise limit.

(g) Let f = f1 and write

0≤
�

1 ξ η
�





f (e) f (x−1) f (h−1 x−1)
f (x) f (e) f (h−1)
f (xh) f (h) f (e)









1
ξ

η





= f (e)(1+ |ξ|2 + |η|2) + 2Re( f (x)ξ+ f (xh)η+ f (h)ξη).

If η= −ξ, then
0≤ f (e) + 2( f (e)−Re f (h))|ξ|2 + 2Re(( f (x)− f (xh))ξ).

Taking

ξ=
1
ε
·

f (xh)− f (x)
| f (xh)− f (x)|

for ε > 0 if f (x) 6= f (xh), we obtain an inequality

| f (xh)− f (x)| ≤
ε

2
f (e) +

1
ε
( f (e)−Re f (h)),

so that we have
limsup

h→e
sup
x∈G
| f (xh)− f (x)| ≤

ε

2
f (e).

Since ε can be taken arbitrarily, f is right uniformly continuous. The left uniform continuity is shown
in the same manner.

Example 1.1. Let G = R. Then, f (x) := cos x is positive definite since

n
∑

k,l=1

cos(xk − x l)ξkξl =
n
∑

k,l=1

(cos xk cos x l + sin xk sin x l)ξkξl

=
�

�

�

n
∑

k=1

ξk cos xk

�

�

�

2
+
�

�

�

n
∑

k=1

ξk sin xk

�

�

�

2
≥ 0.
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2 Bochner’s theorem on Z: complex analysis

Bochner’s theorem is about the correspondence between positive definite functions and probability
Borel measures. On the additive group Z, positive definite functions become sequences, and the domain
of probability measures is the one-dimensional torus T := R/2πZ.

In this chapter, we will establish the following one-to-one correspondences:

�

Points in the closed convex hull of
the curve (e−iθ , e−i2θ , · · · ) in CN

�







Positive definite
sequences (ck)k∈Z

with c0 = 1







�

Carathéodory functions
	

�

Probability Borel
measures on T

�

.2.2

2.1

2.3

The vertical, left, and right arrows in the above diagram are discussed in Section 2.1, 2.2, and 2.3
respectively, and the definition of each term will be given throughout this chapter. Bochner’s theorem
on the additive group Z will be finally deduced as a corollary of the two horizontal correspondences in
the above diagram.

2.1 The Carathéodory coefficient problem

We are going to investigate the origin of positive definiteness that occurs in the context of complex
analysis. The concept of positive definiteness of functions was originally inspired by the “Carathéodory
coefficient problem” in early complex analysis. The problem asks the condition on the power series
coefficients for an analytic function defined on the open unit disk to have a positive real part. In other
words, the Carathéodory coefficient problem describes the power series coefficients of some special
functions precisely defined as follows:

Definition 2.1 (Carathéodory functions). The Carathéodory class is the set of all analytic functions f
that map the open unit disk into the region of positive real part, with normalization condition f (0) = 1.
A function in the Carathéodory class will be often called a Carathéodory function.

Example 2.1 (Möbius transforms). Typical examples of functions in the Carathéodory class are given
by the family of functions

fθ (z) =
eiθ + z
eiθ − z

= 1+
∞
∑

k=1

2e−ikθ zk

parametrized by θ ∈ [0,2π). We can check that they are exactly the Möbius transformations that map
the unit disk to the right half space having normalization f (0) = 1. This family of examples play a
crucial role in the representation problem of functions in the Carathéodory class.

Example 2.2 (Convex combinations). Note that the Carathéodory class is convex; if f0 and f1 belong
to the Carathéodory class, then the real part of the image of the function

ft(z) = (1− t) f0(z) + t f1(z)

is also positive for 0< t < 1 and ft(0) = (1− t) + t = 1, so ft also belongs to the Carathéodory class.

Example 2.3 (Positive harmonic functions). Let f be in the Carathéodory class. By definition, the real
part Re f : D → R is a positive harmonic function such that f (0) = 1. Conversely, since there is a
unique harmonic conjugate up to constant, we can recover f from its real part by letting Im f (0) = 0.
In other words, there is a one-to-one correspondence between the Carathódory class and the positive
harmonic functions on the open unit disk that have value one at zero.

5



Carathéodory’s result intuitively tells us that every function in the Carathéodory class can be con-
structed by convex combinations of Möbius transforms fθ . As a result, they can be viewed as “extreme
points” in the Carathéodory class. We will discuss the extreme points after the proof of the Carathéodory
theorem.

Before the discussion, we develop a lemma as a preparation for the interplay between complex
analysis and Fourier analysis.

Lemma 2.1 (Fourier coefficients of analytic functions). Let f be an analytic function on the open unit
disk D with f (0) ∈ R with

f (z) = c0 +
∞
∑

k=1

2ckzk,

the power series expansion of f at z = 0. Then, for 0≤ r < 1 and k ∈ Z we have

ck r |k| =
1

2π

∫ 2π

0

Re f (reiθ )e−ikθ dθ ,

where we use the notation c−k := ck.

Proof. Suppose k > 0 first. The Cauchy integral formula writes

2ckk!=
∂ k f
∂ zk
(0) =

k!
2πi

∫

|z|=r

f (z)
zk+1

dz =
k!

2πi

∫ 2π

0

f (reiθ )
(reiθ )k+1

ireiθ dθ ,

and it implies

2ck rk =
1

2π

∫ 2π

0

f (reiθ )e−ikθ dθ .

Since f (z) zk is analytic, the Cauchy theorem is applied to have

0=
1

2πi

∫

|z|=r

f (z) zk dz =
1

2π

∫ 2π

0

f (reiθ )rkeikθ dθ ,

and it implies

0=
1

2π

∫ 2π

0

f (reiθ )e−ikθ dθ .

By combining the above equations, we obtain the formula. For k = 0, applying the Cauchy theorem for
f , we have

c0 = f (0) =
1

2πi

∫

|z|=r

f (z)
z

dz =
1

2π

∫ 2π

0

Re f (reiθ ) dθ .

For k < 0, we can obtain the same formula by taking complex conjugation on the case k > 0.
Alternatively, we can show the same result using the orthogonal relation of complex exponential

functions. Easy computation shows the identity

Re f (reiθ ) =
1
2
[ f (reiθ ) + f (reiθ )]

=
1
2





�

1+
∞
∑

k=1

2ck(reiθ )k
�

+

�

1+
∞
∑

k=1

2ck(reiθ )k
�





=
1
2

��

1+
∞
∑

k=1

2ck rkeikθ

�

+

�

1+
∞
∑

k=1

2ck rke−ikθ

��

=
∞
∑

k=−∞

ck r |k|eikθ .
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From the uniform convergence of the power series on the compact set {z : |z| ≤ (r + 1)/2} and the
orthogonality

1
2π

∫ 2π

0

e−ikθ eilθ dθ =

(

1 if k = l

0 if k 6= l
,

it follows that

1
2π

∫ 2π

0

Re f (reiθ )e−ikθ dθ =
∞
∑

l=−∞

cl r
|l| 1

2π

∫ 2π

0

eilθ e−ikθ dθ = ck r |k|.

Now, we prove the theorem. The original paper of Carathéodory deals with the functions analytic
on a neighborhood of the closed unit disk, but the same idea can be extended well to the functions
that may have harsh behavior on the boundary. Furthermore, by loosening the regularity requirements
at the boundary, we can establish the exact description of Carathéodory functions in terms of their
coefficients.

Theorem 2.2 (Carathéodory). Let f be an analytic function on the open unit disk with the power series
expansion

f (z) = 1+
∞
∑

k=1

2ckzk.

Then, f belongs to the Carathéodory class if and only if for each n the point (c1, · · · , cn) ∈ Cn belongs to
the convex hull of the curve (e−iθ , · · · , e−inθ ) ∈ Cn parametrized by θ ∈ [0,2π).

Proof. (⇐) Denote by Kn the convex hull of the curve θ 7→ (e−iθ , · · · , e−inθ ) ∈ Cn. Suppose first that
(c1, · · · , cn) ∈ Kn. For each n, there exists a finite sequence of pairs (λn, j ,θn, j) j having the following
convex combination

(c1, · · · , cn) =
∑

j

λn, j(e
−iθn, j , · · · , e−inθn, j )

with coefficients λn, j ≥ 0 such that
∑

j λn, j = 1. Define

fn(z) :=
∑

j

λn, j
eiθn, j + z

eiθn, j − z
,

which has positive real part on |z|< 1 because Re(eiθn, j + z)/(eiθn, j − z)> 0 for |z|< 1. Then,

fn(z) =
∑

j

λn, j(1+
∞
∑

k=1

2e−ikθn, j zk)

= 1+
n
∑

k=1

2ckzk +
∞
∑

k=n+1

 

∑

j

2λn, je
−ikθn, j

!

zk

implies

| fn(z)− f (z)|=

�

�

�

�

�

∞
∑

k=n+1

 

∑

j

2λn, je
−ikθn, j

!

zk −
∞
∑

k=n+1

2ckzk

�

�

�

�

�

≤
∞
∑

k=n+1

�

�

�

�

�

 

∑

j

2λn, je
−ikθn, j

!

− 2ck

�

�

�

�

�

|z|k

≤
∞
∑

k=n+1

4|z|k

converges to zero for |z| < 1. Therefore, f has a non-negative real part on the open unit disk. The
non-negativity can be strengthened to positivity by the open mapping theorem so that f belongs to the
Carathéodory class.
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(⇒) Conversely, suppose that f is in the Carathéodory class. Let (γ1, · · · ,γn) be any point on the
surface ∂ Kn of Kn and S any supporting hyperplane of Kn tangent at (γ1, · · · ,γn). Let (u1, · · · , un) be
the outward unit normal vector of the supporting hyperplane S. Note that this unit normal vector is
uniquely determined with respect to the induced real inner product structure on 2n-dimensional space
Cn described by

〈(z1, · · · , zn), (w1, · · · , wn)〉=
n
∑

k=1

(Re zk Re wk + Im zk Im wk) = Re
n
∑

k=1

zkwk.

Then,
∑n

k=1 |uk|2 = 1 and further that the maximum

M := max
(x1,··· ,xn)∈Kn

Re
n
∑

k=1

xkuk > 0

is attained at (γ1, · · · ,γn). Our goal is to verify the bound

Re
n
∑

k=1

ckuk ≤ M ,

which implies that (c1, · · · , cn) is contained in every half space tangent to Kn so that we finally obtain
(c1, · · · , cn) ∈ Kn.

Since for any θ ∈ [0,2π) the point (e−iθ , · · · , e−inθ ) is in Kn so that

Re
n
∑

k=1

e−ikθuk ≤ M ,

we have for arbitrarily small ε > 0 that

Re
n
∑

k=1

1
rk

e−ikθuk ≤ M + ε

for any 0< r < 1 sufficiently close to 1, thus we can write

Re
n
∑

k=1

ckuk = Re
n
∑

k=1

1
2πrk

∫ 2π

0

Re f (reiθ )e−ikθuk dθ

=
1

2π

∫ 2π

0

Re f (reiθ )Re
n
∑

k=1

1
rk

e−ikθuk dθ

≤
1

2π

∫ 2π

0

Re f (reiθ ) dθ · (M + ε)

= M + ε

thanks to the positivity of Re f , and by limiting r → 1 from left we get the bound

Re
n
∑

k=1

ckuk ≤ M .

Here we introduce an infinite-dimensional version of this theorem.

Proposition 2.3. Consider a sequence space CN, endowed with the standard product topology. Then, the
condition addressed in Caracthéodory’s theorem is equivalent to the following: the point (c1, c2, · · · ) ∈ CN

belongs to the closed convex hull of the curve (e−iθ , e−i2θ , · · · ) ∈ CN parametrized by θ ∈ [0,2π).
Furthermore, the curve (e−iθ , e−i2θ , · · · ) ∈ CN is the set of extreme points of its closed convex hull.
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Proof. Denote by Kn the convex hull of the curve θ 7→ (e−iθ , · · · , e−inθ ) ∈ Cn, and by K the closed convex
hull of the curve θ 7→ (e−iθ , e−i2θ , · · · ) ∈ CN. If we assume the Carathéodory coefficient condition is
true, then since for each n we have a convex combination

(c1, · · · , cn) =
∑

j

λn, j(e
−iθn, j , · · · , e−inθn, j )

with coefficients such that λn, j ≥ 0 and
∑

j λn, j = 1, the sequence

(c1, · · · , cn,
∑

j

λn, je
−i(n+1)θn, j ,

∑

j

λn, je
−i(n+2)θn, j · · · )

=
∑

j

λn, j(e
−iθn, j , · · · , e−inθn, j , e−i(n+1)θn, j , e−i(n+2)θn, j , · · · )

indexed by n is contained in K and converges to the point (c1, c2, · · · ) in the product topology as n→∞,
so we arrive at the desired result. For the opposite direction, let (c1, c2, · · · ) ∈ K . By definition of K we
have an expression

ck = lim
m→∞

m
∑

j=1

λm, je
−ikθm, j

with λm, j ≥ 0 and
∑m

j=1λm, j = 1, for each k. Then,

(c1, · · · , cn) = lim
m→∞

m
∑

j=1

λm, j(e
−iθm, j , · · · , e−inθm, j )

belongs to Kn because Kn is closed.
We can also prove the proposition about extreme points using the Krein-Milman theorem and its

converse. See Proposition 1.5 in [10] for the proof of the converse theorem of the Krein-Milman theo-
rem. We will give an alternative proof without functional analysis in Section 2.3.

2.2 Toeplitz’s algebraic condition

Toeplitz discovered that the coefficient condition addressed in the Carathéodory’s paper can be equiv-
alently described in terms of an algebraic condition that the Hermitian matrices

Hn := (ck−l)
n
k,l=1 =















c0 c−1 c−2 · · · c−n+1

c1 c0 c−1 · · · c−n+2

c2 c1 c0 · · · c−n+3
...

...
...

. . .
...

cn−1 cn−2 cn−3 · · · c0















of size n×n always have non-negative determinants for any n. This algebraic condition is equivalent to
the Hn being all positive semi-definite matrices. The principal minors of a positive semi-definite matrix
are positive semi-definite, and a Hermitian matrix such that every leading principal minor has non-
negative determinant is positive semi-definite. Threrfore, the bilateral sequence (ck)∞k=−∞ is a positive
definite function when we consider it as a complex-valued function on Z that maps an integer k to ck

if and only if it is a positive definite sequence in the following sense:

Definition 2.2. A bilateral complex sequence (ck)∞k=−∞ is said to be positive definite if

n
∑

k,l=1

ck−lξkξl ≥ 0

for each n and (ξ1, · · · ,ξn) ∈ Cn.
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Theorem 2.4 (Carathéodory-Toeplitz). Let f be an analytic function on the open unit disk with the power
series expansion

f (z) = 1+
∞
∑

k=1

2ckzk.

Then, f belongs to the Carathéodory class if and only if the sequence (ck)∞k=−∞ is positive definite, where
we use the notations c0 = 1 and c−k = ck.

Proof. (⇒) If f is in the Carathéodory class, then because

ck−l r
|k−l| =

1
2π

∫ 2π

0

Re f (reiθ )e−i(k−l)θ dθ ,

we have
n
∑

k,l=1

ck−lξkξl = lim
r↑1

1
2π

∫ 2π

0

Re f (reiθ )

�

�

�

�

�

n
∑

k=1

e−ikθξk

�

�

�

�

�

2

dθ ≥ 0

for each n.
(⇐) Conversely, assume that the coefficient sequence (ck)∞k=−∞ is positive definite. Put ξk = zk−1

and z = reiθ to write

0≤
n+1
∑

k,l=1

ck−lz
k−1(z)l−1

=
n
∑

k,l=0

ck−l r
k+l ei(k−l)θ

=
n
∑

k,l=0

ck−l r
|k−l|r2min{k,l}ei(k−l)θ

=
n
∑

k=−n

ck r |k|eikθ
n−|k|
∑

l=0

r2l

=
n
∑

k=−n

ck r |k|eikθ 1− r2(n−|k|+1)

1− r2

=
1

1− r2

n
∑

k=−n

ck r |k|eikθ −
rn+2

1− r2

n
∑

k=−n

ck rn−|k|eikθ .

For r = |z|< 1 the first term tends to

lim
n→∞

1
1− r2

n
∑

k=−n

ck r |k|eikθ =
1

1− |z|2
Re f (z),

and |ck| ≤ c0 = 1 implies the second term vanishes as
�

�

�

�

�

rn+2

1− r2

n
∑

k=−n

ck rn−|k|eikθ

�

�

�

�

�

≤
rn+2

1− r2
(2n+ 1)→ 0

as n → ∞. It proves Re f (z) ≥ 0 for |z| < 1, and we obtain Re f (z) > 0 by the open mapping
theorem.

2.3 Proof by the Herglotz representation theorem

Herglotz [5] proved another equivalent condition for the Carathéodory class in 1911, which states
the correspondence between the Carathéodory class and probability Borel measure on the unit circle.

10



Nowadays it is considered as the first Bochner-type theorem. The Carathéodory theorem states that
the function f in the Carathéodory class is a limit point of the set of convex combinations of Möbius
transforms z 7→ (eiθ + z)/(eiθ − z). Herglotz’s theorem, which we now also often call as the Herglotz
representation theorem, states that in fact f can be directly represented by the integral of the Möbius
transforms with respect to a certain probability measure.

The essential difficulty lies in the construction of a measure, and here we resolve this by applying
either Helly’s selection theorem or the Riesz-Markov-Kakutani representation theorem. Suppose the
function f is analytic on a neighborhood of the closed unit disk D. In this case, by appropriately
manipulating the identities for r = 1 in Lemma 2.1, or by using the Cauchy integral formula along the
unit circle, we can get

f (z) =
1

2π

∫ 2π

0

eiθ + z
eiθ − z

Re f (eiθ ) dθ .

Based on this representation of f , we will try to approximate the measure dµ with the absolutely
continuous measures (2π)−1 Re f (reiθ ) dθ by limiting r ↑ 1. More precisely, we will use the following
lemma:

Lemma 2.5. Let f be an analytic function on the open unit disk. For |z|< 1,

f (z) = lim
r↑1

1
2π

∫ 2π

0

eiθ + z
eiθ − z

Re f (reiθ ) dθ .

Proof. By the uniform convergence of the power series on the closed disk {z : |z| ≤ (r + 1)/2} for each
fixed r < 1, we have

lim
r↑1

1
2π

∫ 2π

0

eiθ + z
eiθ − z

Re f (reiθ ) dθ = lim
r↑1

1
2π

∫ 2π

0

�

1+
∞
∑

k=1

2e−ikθ zk

�

Re f (reiθ ) dθ

= 1+ lim
r↑1

∞
∑

k=1

2

�

1
2π

∫ 2π

0

e−ikθ Re f (re−iθ ) dθ

�

zk

= 1+ lim
r↑1

∞
∑

k=1

2ck rkzk

= lim
r↑

f (rz) = f (z).

Theorem 2.6 (The Herglotz representation theorem). Let f be a complex-valued function defined on the
open unit disk. Then, f belongs to the Carathéodory class if and only if f is represented as the following
Stieltjes integral

f (z) =

∫ 2π

0

eiθ + z
eiθ − z

dµ(θ ),

where µ is a probability Borel measure on T= R/2πZ.

First proof: using Helly’s selection theorem. (⇐) Take a probability Borel measure µ on T. Then, we can
check the function defined by

f (z) :=

∫ 2π

0

eiθ + z
eiθ − z

dµ(θ )

is analytic on the open unit disk easily by using Morera’s theorem and Fubini’s theorem. Recall that
z 7→ (eiθ + z)/(eiθ − z) has positive real part since it is a conformal mapping that maps the open unit
disk onto the right half plane. The function f belongs to the Carathéodory class by the open mapping
theorem since

Re f (z) =

∫ 2π

0

Re
eiθ + z
eiθ − z

dµ(θ )≥ 0.

11



(⇒) Fix a point z in the open unit disk D. Define fn(θ ) := (2π)−1 Re f ((1− n−1)eiθ ) and

Fn(θ ) :=

∫ θ

0

Re fn(ψ) dψ

for θ ∈ [0,2π]. Note Fn(0) = 0 and Fn(2π) = 1 for all n. Since Re f ≥ 0, Fn is also monotonically
increasing. Therefore, the sequence (Fn)n has a pointwise convergent subsequence (Fn j

) j on [0,2π] by
Helly’s selection theorem. Let

F(θ ) := lim
ψ↓θ

lim
j→∞

Fn j
(ψ).

Then, F is a distribution function such that F(0) = 0 and F(2π) = 1, and Fn j
converges to F at every

continuity point θ of F . It means Fn j
converges to F weakly as j→∞, so by the Portmanteau theorem,

we get
∫ 2π

0

eiθ + z
eiθ − z

dFn j
(θ )→

∫ 2π

0

eiθ + z
eiθ − z

dF(θ )

as j→∞ since θ 7→ (eiθ + z)/(eiθ − z) is continuous and bounded on T. On the other hand,
∫ 2π

0

eiθ + z
eiθ − z

dFn j
(θ ) =

1
2π

∫ 2π

0

eiθ + z
eiθ − z

Re f ((1− n−1
j )e

iθ ) dθ → f (z)

as j→∞. Therefore, by comparing both limits, we can conclude that

f (z) =

∫ 2π

0

eiθ + z
eiθ − z

dF(θ ) =

∫ 2π

0

eiθ + z
eiθ − z

dµ(θ ),

where µ is the probability measure on T defined by the distribution function F as µ([0,θ]) = F(θ ).

Second proof: using the Riesz representation theorem. As we have seen in the first proof that uses Helly’s
selection theorem, one direction is trivial. Suppose f is a Carathéodory function. Let g ∈ C(T) be a
complex-valued test function. Define a sequence of complex linear functionals ln on C(T) as

ln[g] :=
1

2π

∫ 2π

0

g(θ )Re f ((1− n−1)eiθ ) dθ .

It is positive and bounded since Re f ≥ 0 and ‖lr‖ = lr[1] = 1. By the Alaoglu theorem, the sequence
has (ln)n a subsequence (ln j

) j that converges in the weak∗ topology of C(T)∗. If we let l be the limit,
then l[1] = lim j→∞ ln j

[1] = 1 because 1 ∈ C(T). (Note that it is not valid if the domain space, T here,
is not compact, and we will investigate this problem more carefully in the next chapter.)

By the Riesz-Markov-Kakutani representation theorem, there is a probability Borel measure µ on T
such that

l[g] =
1

2π

∫ 2π

0

g(θ ) dµ(θ )

for all g ∈ C(T). Then, for each fixed z in the open unit disk it follows from Lemma 2.5 that

1
2π

∫ 2π

0

eiθ + z
eiθ − z

dµ(θ ) = l[gz] = lim
j→∞

ln j
[gz] = f (z)

since gz(θ ) := (eiθ + z)/(eiθ − z) belongs to C(T).

As a corollary of Herglotz’ theorem, we finally arrive at:

Corollary 2.7 (Bochner’s theorem on Z). A function c : Z→ C is positive-definite and c0 = 1 if and only
if there is a probability Borel measure µ on T= R/2πZ such that

ck =

∫ 2π

0

e−ikθ dµ(θ ).

12



Proof. Let µ be a probability Borel measure on T. Then, the sequence defined in the statement is
positive definite because

n
∑

k,l=1

ck−lξkξl =
n
∑

k,l=1

∫ 2π

0

e−i(k−l)θ dµ(θ ) ξkξl

=

∫ 2π

0

�

�

�

�

�

n
∑

k=1

e−ikθξk

�

�

�

�

�

2

dµ(θ )≥ 0

for any (ξ1, · · · ,ξn) ∈ Cn, and c0 = 1 is clear.
On the other hand, if the sequence (ck)∞k=−∞ is positive definite and c0 = 1, then the function

z 7→ 1 +
∑∞

k=1 2ckzk is in the Carathéodory class. By the Herglotz representation theorem, there is a
probability Borel measure µ on T such that

1+
∞
∑

k=1

2ckzk =

∫ 2π

0

ei t + z
ei t − z

dµ(t)

=

∫ 2π

0

�

1+
∞
∑

k=1

2e−ikθ zk

�

dµ(t)

= 1+
∞
∑

k=1

2

�

∫ 2π

0

e−ikθ dµ(θ )

�

zk

in z ∈ D, hence the desired result follows.

Herglotz’ theorem assigns a probability measure µ to a Carathéodory function f by a weak∗ limit

lim
r↑1

1
2π

Re f (reiθ ) dθ = dµ.

This method allows us to construct measures using complex analytic functions. We now introduce
several examples.

Example 2.4 (Dirac measures). Identify T = R/2πZ with the interval [0,2π). For each ψ ∈ [0,2π),
the Möbius transform fψ(z) = (eiψ + z)/(eiψ − z) corresponds to the Dirac measure δψ, defined as

δψ(E) :=

(

1 , if ψ ∈ E,

0 , if ψ /∈ E

for Borel measurable E ⊂ [0,2π). This is not only a direct consequence of the Herglotz representation
theorem, but can also be viewed as a property of the Poisson kernel. Recall that the measure µ in the
Herglotz theorem is constructed as the weak∗ limit of (2π)−1 Re f (reiθ ) dθ with r ↑ 1. The Poisson
kernel is given as the real part of the Möbius transform

Pr(ψ− θ ) =
1− r2

1− 2r cos(θ −ψ) + r2
= Re

�

1+ rei(θ−ψ)

1− rei(θ−ψ)

�

= Re fψ(reiθ ).

Since

lim
r↑1

1
2π

∫

g(θ )Pr(ψ− θ ) dθ = g(ψ) =

∫

g(θ ) dδψ(θ )

for all g ∈ C(T), we have (2π)−1 Re f (reiθ ) dθ → δψ in weak∗ topology of C(T)∗.

Example 2.5 (Continuous restrictions). Let f be a Carathéodory function and τ : D→ D be an analytic
function on the open unit disk D. Then, the composition f ◦τ is Carathéodory.

Suppose we have an additional condition that τ can be continuously extended to τ : D → D.
The probability measure on T corresponded to the composition f ◦ τ via the Herglotz theorem can be

13



constructed as the weak∗ limit of (2π)−1 Re f (τ(reiθ )) dθ as r ↑ 1. Since f ◦τ is a continuous function
on the closed disk D, the limit is described as the continuous density function T = R/2πZ→ R : θ 7→
Re f (τ(eiθ )).

Example 2.6 (The nth power map). For a Carathéodory function f , we have a new family of functions
in the Carathéodory class, the composition with the nth power map z 7→ f (zn). If µ is a probability
measure on T= R/2πZ that satisfies

f (z) =

∫

eiθ + z
eiθ − z

dµ(θ ),

then we have

f (zn) =

∫

eiθ + z
eiθ − z

dµn(θ )

for each positive integer n, where

µn(E) = lim
r↑1

1
2π

∫

E

Re f (rneinθ ) dθ

= lim
r↑1

n−1
∑

j=0

∫

(E−2π j/n)∩[0,2π/n)
Re f (rneinθ ) dθ

= lim
r↑1

1
n

n−1
∑

j=0

∫

(nE−2π j)∩[0,2π)
Re f (rneiθ ) dθ

=
1
n

n−1
∑

j=0

µ((nE − 2π j)∩ [0,2π)).

If µ is absolutely continuous with respect to the Lebesgue measure, then the density of µn is the pull
back by the kneading transformation

Tn(θ ) := nθ − 2π
�

nθ
2π

�

.

The corresponding positive definite sequence is transformed from (ck)k∈Z to

(· · · , 0, c−2, 0, · · · , 0, c−1, 0, · · · , 0, c0, 0, · · · , 0, c1, 0, · · · , 0, c2, 0, · · · ),

where n− 1 zeros are between ck and ck+1.

The rest of the proof of Proposition 2.3. Recall that K denotes the closed convex hull of the curve θ 7→
(e−iθ , e−i2θ , · · · ) ∈ CN. We first claim that a point on this curve is an extreme point of K . Fix θ ∈ [0,2π)
and suppose two complex sequences (c1, c2, · · · ) and (d1, d2, · · · ) in CN are contained in K and satisfy

ck + dk

2
= e−ikθ

for all k ∈ N. For each k, since all components of K are bounded by one so that |ck| ≤ 1 and |dk| ≤ 1,
and since e−ikθ is an extreme point of the closed unit disk D ⊂ C, we have ck = dk = e−ikθ , we deduce
the desired claim.

For the converse, take a point (c1, c2, · · · ) in K such that no θ satisfies ck = e−ikθ for all k ∈ N. As
we have seen, there is a probability Borel measure µ on T that corresponds to (c1, c2, · · · ). Since µ is
not a Dirac measure, the support of µ contains at least two points. Partition the support of µ into two
non-trivial subsets A and B. Then, for two measures µA and µB given by µA(E) := µ(E ∩ A)/µ(A) and
µB(E) := µ(E ∩ B)/µ(B) for Borel sets E ⊂ T, the measure µ is a non-trivial convex combination of µA

and µB. By paraphrasing this fact in terms of the positive definite sequences, we can see that (c1, c2, · · · )
is not an extreme point.

14



3 Bochner’s theorem on R: probability theory

In this chapter, we prove the Bochner theorem on the additive group R using Lévy’s continuity theorem.
The Lévy continuity theorem relates the weak convergence of probability measures and the pointwise
convergence of positive definite functions. Before we provide the statements for the theorems, we
first introduce several fundamental theorems about the topology of weak convergence, such as the
Portmanteau theorem, theorems on the Lévy Prokhorov metric, and the Prokhorov theorem on the
compactness in the space of probability measures.

It is known that the systematic study of positive definite functions to investigate the convergence
of measures began in probability theory. A celebrated research was done in the book [6] by Paul Lévy.
Recall that a probability distribution is defined as a measure of norm one on a “state space”, which
is R for usual random variables. Some classical problems including central limit theorems and laws
of large numbers that arise in probability theory describe limit behaviors of a sequence of probability
distributions. The Lévy continuity theorem tells us that it is easier to see the limits via the Fourier
transforms of probability measures, than to see the measures directly.

3.1 Topologies on the space of probability measures

First, we will investigate topologies on the space of probability measures. In probability theory, the
topology of weak convergence is the most often given when considering convergence of probability
measures.

Definition 3.1 (Weak convergence). Let (µα)α be a net of probability Borel measures on a topological
space S. We say µα converges weakly to another probability Borel measure µ if

∫

g dµα→
∫

g dµ

for any g ∈ Cb(S), where Cb(S) denotes the space of continuous and bounded functions. We often write
µα⇒ µ when µα converges weakly to µ.

In fact, for its own interests in probability theory, the state space S is usually taken to be R, or more
generally a metrizable space. However, we temporarily define the weak convergence in the meaning-
less general setting, the topological spaces, to further compare with another topology on the space of
measures. Some reasons why we require the metrizability of S will be addressed later.

Vague convergence is another convergence that reveals a more functional analytic nature of mea-
sures. Recall that the Riesz-Markov-Kakutani representation theorem states that on a locally compact
Hausdorff space the space of regular Borel finite (complex) measures has a natural identification to the
continuous dual of the space of continuous functions vanishing at infinity.

Definition 3.2 (Vague convergence). Let (µα)α and µ be probability regular Borel measures on a locally
compact Hausdorff space Ω. We say µα converges vaguely to another probability regular Borel measures
µ if

∫

g dµα→
∫

g dµ

for any g ∈ C0(Ω), where C0(Ω) denotes the space of continuous functions vanishing at infinity. By the
Riesz-Markov-Kakutani representation theorem, the topology of vague convergence coincides with the
weak∗ topology of the dual space C0(Ω)∗.

We warn that the regular Borel measures in the Riesz-Markov-Kakutani representation theorem for
locally compact Hausdorff spaces are different from what we usually define as regular Borel measures
in probability theory. For the convenience of further discussions, here we clarify the concept of regular
measures.
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Definition 3.3 (Regular Borel measures). If Ω is locally compact and Hausdorff, then we say a Borel
measure µ on Ω is regular if

µ(E) = sup{µ(K) : K is compact in E }= inf{µ(U) : U is open containing E }

for all Borel measurable E. If S is metrizable, then we say a Borel measure µ on S is regular if

µ(E) = sup{µ(F) : F is closed in E }= inf{µ(U) : U is open containing E }

for all Borel measurable E. Note that even if a topological space is both locally compact Hausdorff and
metrizable, the two notions are not equivalent — we avert possible confusion by mentioning which
type the underlying space is. We denote the space of all probability regular Borel measures on Ω and S
by Prob(Ω) and Prob(S), respectively.

Lemma 3.1 (Probability measure is regular on metrizable spaces). Let S be a metrizable space. Then,
every finite Borel measure µ on S is regular.

We have omitted the regularity condition on probability measures on T in Chapter 2 because every
finite Borel measure on a compact metric space is regular in both senses.

Vague convergence is less important in probability theory because there are situations that we have
to deal with probability measures on nowhere locally compact spaces, for example, the separable Hilbert
space or the space of continuous functions C([0,1]). This viewpoint frequently occurs and is useful
when we try to analyze a stochastic process as a single random variable.

Nevertheless, vague convergence is what we will mainly consider throughout Chapter 4. Recall
that we also have used weak∗ topology as well in Chapter 2. In this regard, we need to connect vauge
convergence to weak convergence to describe our subjects in probabilistic languages: the following
theorem is one such result.

Theorem 3.2. Let Ω be a locally compact Hausdorff space. The topology of weak convergence and the
topology of vague convergence are identical in Prob(Ω), the space of probability regular Borel measures on
Ω.

Note that the topology of weak and vague convergence is the topology generated by the family of
subsets

Uµ,ε,g := {ν : |
∫

g dµ−
∫

g dν |< ε },

where µ ∈ Prob(Ω), ε > 0, and g is contained in Cb(Ω) and C0(Ω) respectively. The topologies are not
sequential in general, we must prove it using nets.

Proof. One direction is clear, since the topology of vague convergence is coarser than the topology
of weak convergence. For the opposite, let (µα)α be a net in Prob(Ω) that converges vaguely to µ ∈
Prob(Ω), and take g ∈ Cb(Ω). Since µ(Ω) = ‖µ‖ = 1, there is ϕ ∈ C0(Ω) such that ‖ϕ‖ = 1 and
∫

ϕ dµ > 1− ε. We may assume ϕ ≥ 0 without loss of generality by taking max{ϕ, 0}. Then, since gϕ
vanishes at infinity and

∫

ϕ dµα converges to
∫

ϕ dµ, we have

|
∫

g dµα −
∫

g dµ| ≤ |
∫

gϕ dµα −
∫

gϕ dµ|+ ‖g‖
∫

(1−ϕ) d(µα +µ)

so that

limsup
α
|
∫

g dµα −
∫

g dµ| ≤ 2‖g‖ε

for arbitrary ε > 0. Therefore, we have the weak convergence of µα to µ.
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Example 3.1 (Escaping to the infinity). The two topologies are different if we consider the space of
finite measures or measures bounded by one, instead of the space of probability measures. A terse
example is the shifting sequence of dirac measures δn, which converges to the zero measure in the
topology generated by C0, but diverges in the topology generated by Cb.

According to this result, under the assumption that the base space is locally compact and Haus-
dorff, we do not have to distinguish the topology of weak and vague convergence. Now we return to
probability theory. Two classical theorems of the space of probability measures on a metric space, the
metrizability and a compactness criteria for the space of probability measures will be introduced. They
will be applied to see weak∗ convergences of probability measures on R, and it is doable because R is
both a metric space and a locally compact space.

We are now going to see some useful theorems on weak convergence of probability measures. For
a deeper discussion on the topology of weak convergence, see the textbook of Parthasarathy [9].

Lemma 3.3 (The Portmanteau theorem). Let S be a metric space, and µα be a net of probability Borel
measures on S. The following statements are all equivalent:

(a)
∫

g dµα→
∫

g dµ for every g ∈ Cb(S), i.e. weakly convergent.

(b)
∫

g dµα→
∫

g dµ for every uniformly continuous g ∈ Cb(S).

(c) limsupαµα(F)≤ µ(F) for every closed F ⊂ S.

(d) lim infαµα(U)≥ µ(U) for every open U ⊂ S.

(e) limαµα(A) = µ(A) for every Borel set A⊂ S such that µ(∂ A) = 0.

Proof. (a)⇒(b) Clear.
(b)⇒(c) Let U be an open set such that F ⊂ U . There is uniformly continuous g ∈ Cb(S) such that

1F ≤ g ≤ 1U . Therefore,

limsup
α

µα(F)≤ limsup
α

µα(g) = µ(g)≤ µ(U).

By the outer regularity of µ, we obtain lim supαµα(F)≤ µ(F).
(c)⇔(d) Clear by taking complements.
(c)+(d)⇒(e) It easily follows from

limsup
α

µα(A)≤ µ(A) = µ(A) = µ(A◦)≤ lim inf
α

µα(A
◦).

(e)⇒(a) Let g ∈ Cb(S) and ε > 0. Since the pushforward measure g∗µ has at most countably many
mass points, there is a partition (t i)ni=0 of an interval containing [−‖g‖,‖g‖] such that |t i+1 − t i | < ε
and µ({x : g(x) = t i}) = 0 for each i. Let (Ai)n−1

i=0 be a Borel decomposition of S given by Ai :=
g−1([t i , t i+1)), and define fε :=

∑n−1
i=0 t i1Ai

so that we have supx∈S |gε(x)− g(x)| ≤ ε. From

|µα(g)−µ(g)| ≤ |µα(g − gε)|+ |µα(gε)−µ(gε)|+ |µ(gε − g)|

≤ ε +
n−1
∑

i=0

|t i ||µα(Ai)−µ(Ai)|+ ε,

we get
limsup

α
|µα(g)−µ(g)|< 2ε.

Since ε is arbitrary, we are done.

Theorem 3.4 (Lévy-Prokhorov metric). Let (S, d) be a metric space, and Prob(S) be the set of probability
Borel measures on S. Denote by B(S) the σ-algebra of all Borel sets. Define a function π : Prob(S) ×
Prob(S)→ [0,∞) such that

π(µ,ν) := inf{ε > 0 : µ(E)≤ ν(Eε) + ε, ν(E)≤ µ(Eε) + ε, ∀E ∈ B(S) },
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where Eε denotes the ε-neighborhood of a, Eε :=
⋃

x∈E B(x ,ε). The set in the definition of π contains
ε = 1 so that it is always non-empty.

(a) The function π is a metric.

(b) For a sequence µn ∈ Prob(S), if µn→ µ in π, then µn⇒ µ.

(c) For a net µα ∈ Prob(S), if µα⇒ µ, then µα→ µ in π, given S is separable.

(d) The metric space (Prob(S),π) is separable if and only if (S, d) is separable.

Proof. (a) We will only prove the two non-trivial parts: non-degeneracy and triangle inequality. Let
d(µ,ν) = 0 so that there is a sequence εn ↓ 0 such that for every Borel E we have

µ(E)≤ ν(Eεn) + εn, ν(E)≤ µ(Eεn) + εn,

Taking limit n→ 0, we obtain
µ(E)≤ ν(E), ν(E)≤ µ(E)

for all Borel sets E. Thus µ(F) = ν(F) for all closed F , and the inner regularity proves µ = ν. For the
triangle inequality, take µ,ν,λ ∈ Prob(S). Take sequences an ↓ d(µ,λ) and bn ↓ d(λ,ν) such that

µ(E)≤ λ(Ean) + an ≤ ν((Ean)bn) + an + bn ≤ ν(Ean+bn) + an + bn

and
ν(E)≤ λ(E bn) + bn ≤ µ((E bn)an) + an + bn ≤ µ(Ean+bn) + an + bn

for all Borel sets E. Taking limit n→∞ we get d(µ,ν)≤ infn(an + bn) = d(µ,λ) + d(λ,ν).
(b) Take εn ↓ 0 such that µn(E)≤ µ(Eεn)+εn for every Borel E, which deduces limsupn→∞µn(F)≤

µ(F) for every closed F . Therefore, µn⇒ µ by the Portmanteau theorem.
(c) Let E be Borel and fix ε > 0. Note that since an open interval is uncountable, there is r in the

interval such that µ(∂ B(x , r)) = 0 for any point x ∈ S because uncountable sums of positive numbers
always diverge to infinity. If {x i}∞i=1 is dense in S, then

S =
∞
⋃

i=1

B(x i ,εi)

for some εi ∈ (ε/4,ε/2) such that µ(∂ B(x i ,εi)) = 0. Define

B :=
�

n
⋃

i=1

B(x i ,εi)
�c

for sufficiently large n such that µ(B)< ε/3. Define A to be the union of all B(x i ,εi) such that 1≤ i ≤ n
and B(x i ,εi)∩ E 6=∅. Then, E ⊂ A∪ B and A⊂ Eε since εi < ε/2.

Since µ(∂ B(x i ,εi)) = 0 for all i, we have µ(∂ A) = 0 and µ(∂ B) = µ(∂ (Bc)) = 0, we can take α0 by
the Portmanteau theorem such that α� α0 implies

max{ |µα(A)−µ(A)|, |µα(B)−µ(B)| }<
ε

3
.

Then, d(µα,µ)≤ ε for all α� α0 since

µ(E)≤ µ(A) +µ(B)≤ µ(A) +
1
3
ε ≤ µα(A) +

2
3
ε < µ(Eε) + ε

and
µα(E)≤ µα(A) +µα(B)≤ µα(A) +

2
3
ε ≤ µ(A) + ε ≤ µ(Eε) + ε.
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(d) Let {x i}∞i=1 be dense in S. We want to show

M :=

�

rational coefficient convex combination of
Dirac measures δx i

�

is dense in Prob(S). Let µ ∈ Prob(S) and suppose g ∈ Cb(S) is uniformly continuous so that for fixed
ε > 0 we can take δ > 0 such that |x − y| < δ implies |g(x)− g(y)| < ε/4. Since S =

⋃∞
i=1 B(x i ,δ),

we can have a partition {A1, · · · , An, B} of S such that A := B(x i ,δ)\Ai−1 and µ(B)< ε/8‖g‖. Take any
y ∈ B.

Define ν ∈M such that

ν :=
n
∑

i=1

(µ(Ai) + εi)δx i
+ (µ(B)−

n
∑

i=1

εi)δy ,

with perturbations εi such that µ(Ai) + εi ∈Q and
∑n

i=1 |εi |< ε/4. The measure ν ∈M depends on ε.
Then,

|
∫

g dν−
∫

g dµ| ≤
n
∑

i=1

|
∫

Ai

g dν−
∫

Ai

g dµ|+ |
∫

B

g dν−
∫

B

g dµ|

≤
n
∑

i=1

∫

Ai

|g(x i)− g(x)|dµ(x) +
∫

B

|g(y)− g(x)| dµ(x) +
ε

2

≤
n
∑

i=1

∫

Ai

ε

4
dµ+

ε

8M
2M +

ε

2
< ε.

Therefore, M is dense in Prob(S).

Definition 3.4 (Polish spaces). A topological space X is called Polish if it is homeomorphic to a complete
separable metric space.

Polish spaces are measure-theoretically well-behaved topological spaces that occur as one of the
most fundamental assumptions in probability theory. The above theorem about the Prokhorov metric
states that if S is Polish then so is Prob(S). The importance of Polish spaces can be found in several
theorems such as the Prokhorov theorem and the Kolmogorov extension theorem.

The Prokhorov theorem is a compactness theorem, and will be critically used to construct a limit
of a sequence of measures. Tightness is the measure-theoretic paraphrase of the compactness in the
probability measure space according to the Prokhorov theorem.

Definition 3.5 (Tight measures). Let M be a set of probability Borel measures on a metric space S. We
say M is tight if for every ε > 0 there is a compact K ⊂ S such that µ(K)> 1− ε for all µ ∈ M

Theorem 3.5 (The Prokhorov theorem). Let M be a subset of Prob(S) for a Polish space S. The set M is
relatively compact in the topology of weak convergence if and only if it is tight.

Proof. (⇒) Suppose M is relatively compact. We first claim that for a given countable open cover
{Ui}∞i=1 of S and for each ε > 0 we can find n such that

inf
µ∈M

µ
�

n
⋃

i=1

Ui

�

≥ 1− ε.

Assume that it is not true so that there is a sequence µn ∈ M such that

µn

�
n
⋃

i=1

Ui

�

< 1− ε.
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If we take a subsequence (µnk
)k that converges weakly to µ ∈ M using the compactness of M , then by

the Portmanteau theorem we have

µ
�

n
⋃

i=1

Ui

�

≤ lim inf
k→∞

µnk

�
n
⋃

i=1

Ui

�

≤ lim inf
k→∞

µnk

�

nk
⋃

i=1

Ui

�

≤ 1− ε,

which leads to a contradiction µ(S)≤ 1− ε.
Let {x i}∞i=1 be a dense set in S. Then, since {B(x i , 1/m)}ni=1 is a countable open cover of S for each

integer m> 0, there is nm > 0 such that

inf
µ∈M

µ
�

nm
⋃

i=1

B(x i , 1/m)
�

≥ 1−
ε

2m
.

Define

K :=
∞
⋂

m=1

nm
⋃

i=1

B(x i , 1/m).

It is clearly closed in a complete metric space Prob(S), and is totally bounded since for any ε > 0 we
have K ⊂

⋃nm
i=1 B(x i ,ε) if m satisfies 1/m< ε, so K is compact. Moreover, we can verify

1−µ(K) = µ
�
∞
⋃

m=1

nm
⋂

i=1

B(x i , 1/m)
c�

≤
∞
∑

m=1

�

1−µ
�

nm
⋃

i=1

B(x i , 1/m)
�

�

≤ ε

for every µ ∈ M , so M is tight.
(⇐) Suppose M is tight and let µα be any net in M . We claim that it has a convergent subnet in

Prob(S). Let βS be the Stone-Čech compactification of S. The inclusion ι : S → βS is a topological
embedding because S is completely regular. Pushforward the measures µα to make them probability
Borel measures να := ι∗µα on βS. We want to take a convergent subnet of να ∈ Prob(βS), and to show
the limit is in fact contained in Prob(S).

Our first claim is that the measure να is regular for each α, that is, να ∈ Prob(βS). For any Borel
E ⊂ βS and any ε > 0, there is F ⊂ E ∩ S that is closed in S such that µα(E ∩ S) < µα(F) + ε/2 by
inner regularity, and there is K that is compact in S such that µα(S \ K) < ε/2 by tightness. Then, the
inequality

να(E) = µα(E ∩ S)< µα(F) +
ε

2
< µα(F ∩ K) + ε = να(F ∩ K) + ε

proves the regularity of να since F ∩K is compact in both S and βS with F ∩K ⊂ E. The space Prob(βS)
is compact by the Banach-Alaoglu theorem and the Riesz-Markov-Kakutani representation theorem.
Therefore, να has a subnet νβ that converges to ν ∈ Prob(βS).

Recall that µβ is tight. For each ε > 0, there is a compact K ⊂ S such that νβ (K) = µβ (K) ≥ 1− ε
for all β . Then, by the Portmanteau theorem, we have

ν(S)≥ ν(K)≥ limsup
β

νβ (K)≥ 1− ε.

Since ε is arbitrary, ν is concentrated on S, i.e. ν(S) = 1. Now we restrict ν to S in order to obtain µ,
which is a probability Borel measure on S.

From the definition of weak convergence we have
∫

βS

f dνβ →
∫

βS

f dν

for all f ∈ C(βS). Since νβ (βS \ S) = ν(βS \ S) = 0 and the restriction C(βS)→ Cb(S) is an isomor-
phism due to the universal property of βS,

∫

S

f dµβ →
∫

S

f dµ

for all f ∈ Cb(S), so µβ converges weakly to µ ∈ Prob(S).
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In this proof of the theorem, we can add a new interpretation of tightness; any limit measures
defined on βS must be concentrated on the original state space S. The tightness keeps measures from
escaping the image of S in the compactification, and lets the limit point be concentrated on it. We
can also recognize the topology of weak convergence as the induced topology from the Stone-Čech
compactification.

3.2 Proof by the Lévy continuity theorem

In this section, we will only focus on probability distributions on the real line R and concrete examples
on it, rather than other abstract spaces S. One of the direct connections in probability theory between
convergences in two different realms, measures and positive definite functions, is encoded in the Lévy
continuity theorem. This theorem connects the weak convergence of probability measures and point-
wise convergence of characteristic functions. In this section, we will prove Bochner’s theorem on R with
the aid of the Lévy continuity theorem.

A characteristic function is defined as the Fourier transform of a probability measure, with reversed
sign on the phase term. Characteristic functions have an advantage that we can learn the information
about probability measures by studying continuous functions instead of the measures themselves.

Definition 3.6 (Characteristic functions). Let µ be a probability Borel measure on R. The characteristic
function of µ is a function ϕ : R→ C defined by

ϕ(t) :=

∫

ei t x dµ(x).

Equivalently, if µ is the distribution of a random variable X , then ϕ(t) = Eei tX .

Proposition 3.6. Let ϕ be a characteristic function of a probability Borel measure µ on R. Then, ϕ is
positive definite and uniformly continuous.

Proof. It follows clearly that

n
∑

k,l=1

ϕ(tk − t l)ξkξl =

∫

�

�

�

�

�

n
∑

k=1

ei tk xξk

�

�

�

�

�

2

dµ(x)≥ 0,

and

|ϕ(t)−ϕ(s)| ≤
∫

|ei t x − ei ts| dµ(x)≤ |t − s|.

Example 3.2. Many continuous positive definite functions are computed from probability distributions:

Name mass or density functions characteristic functions

Constant p(x) = 1{c}(x) ϕ(t) = eic t

Bernoulli p(x) = 1
2 · 1{±1}(x) ϕ(t) = cos t

Normal f (x) = 1p
2π

e−x2/2 ϕ(t) = e−t2/2

Uniform f (x) = 1
2 · 1[−1,1](x) ϕ(t) = sinc t

Exponential f (x) = e−x · 1[0,∞)(x) ϕ(t) = (1− i t)−1

Cauchy f (x) = 1/π(1+ x2) ϕ(t) = e−|t|

Polya f (x) = (1− cos x)/πx2 ϕ(t) =max{1− |t|, 0}
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In the proof of the continuity theorem, by characteristic functions, we will show the tightness of
associated probability measures to see their weak convergence. To verify that a family of probability
measures is tight, their tail probabilities ought to be uniformly controlled. The following lemma is
useful in bounding tail probabilities in terms of characteristic functions; the averaging of 1 − ϕ near
zero provides a reasonable estimate of the tail probability.

Lemma 3.7. Let µ be a probability Borel measure on R and ϕ be its characteristic function. Then,

µ([− 2
δ , 2
δ ]

c)≤ 2 ·
1

2δ

∫ δ

−δ
(1−ϕ(t)) d t

for any δ > 0. In particular, a single measure is tight.

Proof. Write the average with the sinc function as

1
2δ

∫ δ

−δ
ϕ(t) d t =

∫

1
2δ

∫ δ

−δ
ei t x d t dµ(x)

=

∫

1
2δ
·

eiδx − e−iδx

i x
dµ(x)

=

∫

sinδx
δx

dµ(x).

Then, for appropriate constant R> 0 we have the following estimate of the sinc function term
∫

sinδx
δx

dµ(x)≤
∫

|x |≤R

1dµ(x) +

∫

|x |>R

1
|δx |

dµ(x)

= 1−
∫

|x |>R

�

1−
1
|δx |

�

dµ(x).

If we take R= 2
δ , then the Chebyshev inequality has

1
2
µ([− 2

δ , 2
δ ]

c)≤
∫

|x |> 2
δ

�

1−
1
|δx |

�

dµ(x)≤ 1−
1

2δ

∫ δ

−δ
ϕ(t) d t,

so we are done.

Theorem 3.8 (The Lévy continuity theorem). Let (µn)∞n=1 be a sequence of probability Borel measures
on R and ϕn their characteristic functions. Then, µn converges weakly to a probability Borel measure µ if
and only if ϕn converges pointwise to a function ϕ that is continuous at zero.

Proof. (⇒) Suppose µn converges weakly to a probability Borel measure µ on R. Let ϕ be the char-
acteristic function of µ. Then, ϕ is continuous at zero. Since ei t x is continuous and bounded for each
t ∈ R, we have

ϕn(t) =

∫

ei t x dµn(x)→
∫

ei t x dµ(x) = ϕ(t)

as n→∞.
(⇐) Let ϕn be the characteristic functions of µn, and suppose ϕn converges pointwise to a function

ϕ. Suppose further that ϕ is continuous at zero. For ε > 0, take δ > 0 using the continuity of ϕ such
that

1
2δ

∫ δ

−δ
(1−ϕ(t)) d t <

ε

4
.

By the bounded convergence theorem, there is N > 0 such that

1
2δ

∫ δ

−δ
|ϕn(t)−ϕ(t)| d t <

ε

4
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so that we have

µn([−
2
δ , 2
δ ]

c)≤ 2 ·
1

2δ

∫ δ

−δ
(1−ϕn(t)) d t < ε

for all n > N . For each n ≤ N , since every single measure is tight, there is a compact Kn ⊂ R such
that µ(K c

n) < ε. If we define a compact set K := [− 2
δ , 2
δ ] ∪

⋃N
n=1 Kn, then µn(K c) < ε for all n, so the

sequence µn is tight.
Let (µn j

) j be any subsequence that converges weakly to a probability measure. The limit of this
subsequence is independent on the choice of the subsequence since its characteristic function is given
by the pointwise limit lim j→∞ϕn j

= ϕ, by the first half of this theorem. Let µ be this unique limit.
Then, µn converges weakly to µ since the tightness guarantees that every subsequence of µn has a
further subsequence by the Prokhorov theorem, which converges to µ weakly.

There are various ways to prove Bochner’s theorem on R. For example, we can prove it using either
Helly’s selection theorem or the Riesz-Markov-Kakutani representation theorem in the same manner as
we did in the previous chapter. We introduce a new proof that follows from the Herglotz representation
theorem, in order to see the relation of two Bochner’s theorems on Z and R. In this proof, the Lévy
continuity theorem is used as a key lemma.

Corollary 3.9 (Bochner’s theorem on R). A function ϕ : R→ C is continuous and positive-definite such
that ϕ(0) = 1 if and only if there is a probability Borel measure µ on R such that

ϕ(t) =

∫

ei t x dµ(x).

Proof. Let µ be a probability Borel measure on R. Then, the function ϕ defined in the statement is
positive definite because

n
∑

k,l=1

ϕ(tk − t l)ξkξl =
n
∑

k,l=1

∫

ei(tk−t l )x dµ(x)ξkξl

=

∫

�

�

�

�

�

∑

k=1

ei tk xξk

�

�

�

�

�

2

dµ(x)≥ 0.

It is continuous because a single probability measure µ is tight so that for every ε > 0 there is M > 0
such that

|ϕ(t)−ϕ(s)| ≤
∫

|ei t x − eisx | dµ(x) =
∫

|2sin(
t − s

2
x)| dµ(x)

≤
∫

|x |≤M

|(t − s)x | dµ(x) +
∫

|x |>M

dµ(x)

≤ M |t − s|+
ε

2
< ε

whenever |t − s|< ε/2M . The normalization condition f (0) = 1 is clear.
Conversely, suppose that ϕ is continuous and positive definite. For each small δ > 0, since the se-

quence (ϕ(δk))k∈Z is positive definite, by the Herglotz representation theorem, there is a finite regular
Borel measure νδ on [−π,π) such that

ϕ(δk) =

∫ π

−π
e−ikθ dνδ(θ )

for every k ∈ Z. If we define a measure µδ on R such that the support is contained in [−π/δ,π/δ] and
µδ(E) := νδ(−δE) for Borel sets E ⊂ [−π/δ,π/δ), then

ϕ(δk) =

∫ π/δ

−π/δ
eiδkx dµδ(x) = ϕδ(δk)
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for every k ∈ Z, where ϕδ is the characteristic function of µδ.
Note that νδ converges to the Dirac measure δ0 as δ → 0 in weak∗ topology of C(T)∗ where T is

identified with the interval [−π,π). This is because trigonometric polynomials are uniformly dense in
C(T) and νδ are uniformly bounded in norm; for any ε > 0 and g ∈ C(T), there is a trigonometric
polynomial h=

∑

k cke−ikθ such that ‖g − h‖C(T) < ε/2, which implies

|〈g,νδ〉 − g(0)| ≤ |〈g − h,νδ〉|+ |〈h,νδ〉 − h(0)|+ |h(0)− g(0)|

≤
ε

2
+ |
∑

k

ckϕ(δk)− h(0)|+
ε

2

and
∑

k

ckϕ(δk)→
∑

k

ck = h(0)

as δ→ 0.
For each t ∈ R and δ > 0, take tδ such that |t − tδ| ≤ δ/2 and tδ ∈ δZ. Then, we get

|ϕδ(t)−ϕu(tδ)|= |
∫

(ei t x − ei tδ x) dµδ(x)|

= |
∫ π

−π
(ei t

δ θ − ei
tδ
δ θ ) dνδ(θ )|

≤
∫ π

−π

�

�

�

� t
δ
−

tδ
δ

�

θ
�

�

� dνδ(θ )

≤
1
2

∫ π

−π
|θ | dνδ(θ )→ 0

as δ→ 0 since the function θ 7→ |θ | is a continuous function on T if we view it as [−π,π). Therefore,
the pointwise convergence is verified as

|ϕδ(t)−ϕ(t)| ≤ |ϕδ(t)−ϕδ(tδ)|+ 0+ |ϕ(tδ)−ϕ(t)| → 0

as δ→ 0, and since ϕ is continuous at zero, we can conclude that ϕ is a characteristic function by the
Lévy continuity theorem.
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4 Bochner’s theorem on locally compact abelian groups: repre-
sentation theory

In this chapter, we extend Bochner’s theorem to a locally compact Hausdorff abelian group G. We
will prove the theorem by two different approaches in Section 4.1 and 4.2, respectively; one is by
generalized Fourier transforms on G, and the other uses representation theory of G. In Section 4.3, we
will prove the Pontryagin duality, one of the most famous applications of the Bochner theorem.

We always mean locally compact Hausdorff abelian groups by locally compact abelian groups. For
a locally compact abelian group G, we will denote the identity of G by e and a fixed Haar measure of G
by d x . Note that the Haar measure is neither in general σ-finite nor inner regular, unless the group G
is σ-compact. However, Fubini’s theorem and the Riesz representation L1(G)∗ ∼= L∞(G) can be applied
up to minor changes (For example, we need to modify the definition of L∞(G) since it is smaller than
the dual space L1(G)∗, but the proofs in this thesis only consider the inclusion Cb(G) ⊂ L∞(G) to endow
the weak∗ topology on Cb(G) or C0(G), so it does not cause any problems). We will not discuss the
modifications carefully, but for details, we can refer to Section 2.3 of Folland’s book [4]. We also note
that substantial parts of the expositions in this chapter are inspired by the same book [4].

4.1 Proof by Fourier transforms

Recall that the Fourier transform on R is given by the integral operator

F f (ξ) =

∫

R
e−i xξ f (x) d x

with an exponential term e−i xξ. The exponential terms parametrized by ξ ∈ R can be recognized as
continuous group homomorphisms from G = R to the circle group T, so we will introduce the space of
these group homomorphisms to define generalized Fourier transforms on G.

Definition 4.1 (Dual group). Let G be a locally compact abelian group, and let T= {z ∈ C : |z|= 1} be
the circle group. The dual group pG of G is the group of all continuous group homomorphisms χ : G→ T,
endowed with the topology of compact convergence. The elements of the dual group are said to be
characters.

First, we want to show pG is again a locally compact abelian group. To see this, consider the Banach
space L1(G). The function space L1(G) is an commutative Banach algebra with multiplication structure

f ∗ g(x) :=

∫

f (y)g(y−1 x) d y,

which is called the convolution. Here we briefly introduce spectral theory of commutative Banach
algebras. The spectrum of an commutative Banach algebra A is the set of all non-zero algebra homo-
morphisms A→ C, which we denote by pA or σ(A). If we endow the weak∗-topology induced from the
dual space A∗ as a Banach space, then the spectrum becomes locally compact and Hausdorff in light
of the Banach-Alaoglu theorem. Proof can be found in [8] or [3]. The convolution algebra L1(G) has
some additional properties:

Lemma 4.1. Let G be a locally compact abelian group, and L1(G) be the convolution algebra.

(a) The algebra L1(G) admits an approximate identity (eα)α such that eα(x) = eα(x−1) = eα(x).

(b) For g ∈ L1(G), we have the limit Lx g → g in L1(G) as x → e.

25



Proof. (a) Let N be a local base of symmetric open neighborhoods at the identity e ∈ G, and assign
ψU ∈ Cc(G) to each U ∈N that satisfies suppψU ⊂ U and

∫

GψU(x) d x = 1. Then,

‖ψU ∗ g − g‖L1(G) ≤
∫∫

G2

|ψU(y)(g(y
−1 x)− g(x))| d x d y ≤ sup

y∈U
‖L y g − g‖L1(G)→ 0

as U → {e}, so the net (ψU)U∈N is an approximate identity for L1(G). The additional properties are
trivially satisfied.

(b) We approximate g by a function h ∈ Cc(G). Since each h is uniformly continuous, if we let K be
a compact neighborhood of supp h, then

‖Lxh− h‖L1(G) = |K |‖Lxh− h‖L∞(G)→ 0

as x → e ∈ G, because supp(Lxh− h) ⊂ K if x is sufficiently near to e ∈ G. If we take h ∈ Cc(G) such
that ‖g − h‖L1(G) < ε for a fixed ε > 0, then

‖Lx g − g‖L1(G) ≤ ‖Lx(g − h)‖L1(G) + ‖Lxh− h‖L1(G) + ‖h− g‖L1(G) < 2ε + ‖Lxh− h‖L1(G)

proves the desired result by taking x → e and ε→ 0.

Let χ ∈ pG. Then, it defines a linear functional

L1(G)→ C : f 7→
∫

G

χ(x) f (x) d x

on L1(G), which is a non-zero algebra homomorphism, so induces a map pG→ (L1(G))p. In fact this map
is a homeomorphism and considered as a canonical identification of the two spectra(the dual group pG
is sometimes called the spectrum of G). It has an analogy with a locally compact version of the theorem
that complex representations of a finite group G has a one-to-one correspondence to C[G]-modules,
because pG and L1(G)p can be recognized as the space of irreducible representations of G and L1(G),
respectively. This correspondence provides a starting point to construct a bridge between the groups
and algebras.

Proposition 4.2. The map pG → (L1(G))p is a homeomorphism. In particular, on pG, the topology of
compact convergence coincides with the weak∗ topology in L1(G)∗.

Proof. (Injectivity) If χ1,χ2 ∈ pG satisfy
∫

G χ1(x) f (x) d x =
∫

χ2(x) f (x) d x for all f ∈ L1(G), then by
the Riesz representation L1(G)∗ ∼= L∞(G), we have χ1 = χ2.

(Surjectivity) Let ϕ ∈ (L1(G))p. Define χ ∈ L∞(G) such that ϕ(g) =
∫

G χ(x)g(x) d x for all g ∈
L1(G), using the Riesz representation theorem. Then,

∫

G

ϕ( f )χ(x)g(x) d x = ϕ( f )ϕ(g) = ϕ( f ∗ g)

=

∫∫

G2

χ(y) f (y x−1)g(x) d x d y =

∫

ϕ(Lx f )g(x) d x

for f , g ∈ L1(G), so we have ϕ( f )χ(x) = ϕ(Lx f ) almost everywhere, where Lx f (y) = f (x−1 y). Then,
we can take f ∈ L1(G) with ϕ( f ) 6= 0 so that χ has a new representation ϕ(Lx f )/ϕ( f ).

We can check that it gives a continuous version of χ by approximation of f by uniformly continuous
functions. It is also a group homomorphism since

ϕ(Lx y f )

ϕ( f )
=
ϕ(Lx(L y f ))

ϕ(L y f )

ϕ(L y f )

ϕ( f )
.
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Finally, the boundedness of χ implies |χ(x)| = |χ(xn)|1/n ≤ ‖χ‖1/n
L∞(G) → 1 for any x ∈ G as n→∞,

and by applying x−1 once more, we have χ : G→ T.
(Continuity) Suppose χα→ χ in the topology of compact convergence in pG ⊂ Cb(G). Let g ∈ L1(G)

and ε > 0. Take a compact set K ⊂ G such that
∫

K c

|g(x)| d x < ε.

Then, by taking the limit of α on

|
∫

G

(χα −χ)(x)g(x)| d x ≤ sup
x∈K
|χα(x)−χ(x)|

∫

K

|g|+ ε,

we have

limsup
α
|
∫

G

(χα −χ)(x)g(x)| d x ≤ ε.

Since ε was chosed to be arbitrary, we are done.
(Continuity of inverse) Suppose χα→ χ in the weak∗ topology of L1(G)∗. Let K be a compact subset

of G and take ε > 0. We will bound |χα(x)−χ(x)| by averaging. Using the continuity of χ, fix a small
compact neighborhood U of the identity e in G such that

1
|U |

∫

U

|1−χ(y)| d y < ε.

Then, for all x ∈ G,

|
1U

|U |
∗χ(x)−χ(x)| ≤ (2ε)1/2 ≤

1
|U |

∫

U

|χ(y−1 x)−χ(x)| d y

=
1
|U |

∫

U

|1−χ(y)| d y < ε.

Similarly, we also have for any x ∈ G that

|χα(x)−
1U

|U |
∗χα(x)| ≤

1
|U |

∫

U

|χα(x)−χα(y−1 x)| d y

=
1
|U |

∫

U

Æ

2− 2Reχα(y) d y

≤
� 1
|U |

∫

U

(2− 2Reχα(y)) d y
�1/2

≤
�

2ε +
2
|U |
|
∫

U

(χ(y)−χα(y)) d y|
�1/2

,

so we have
limsup

α
|χα(x)−

1U

|U |
∗χα(x)| ≤ (2ε)1/2.

Since the map K → L1(G) : x 7→ 1x−1U is continuous so that {1x−1U : x ∈ K} is compact in L1,
there is a finite sequence (x j)nj=1 ⊂ K such that for every x ∈ Kthere is j satisfying

∫

|1x−1U − 1x−1
j U | =

‖1x−1U − 1x−1
j U‖L1(G) < ε. Then,

|1U ∗ (χα −χ)(x)|= |
∫

1x−1U(χα −χ)|

≤ |
∫

(1x−1U − 1x−1
j U)χα|+ |

∫

1x−1
j U(χα −χ)|+ |

∫

(1x−1
j U − 1x−1U)χ|

≤ ε + max
1≤ j≤n

|
∫

1x−1
j U(χα −χ)|+ ε
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implies
limsup

α
|1U ∗ (χα −χ)(x)| ≤ 2ε.

By summing up the above three terms, the inequality

|χα(x)−χ(x)| ≤ |χα(x)−
1U

|U |
∗χα(x)|+ |

1U

|U |
∗ (χα −χ)(x)|+ |

1U

|U |
∗χ(x)−χ(x)|

implies

limsup
α

sup
x∈K
|χα(x)−χ(x)| ≤ (2ε)1/2 +

2ε
|U |
+ ε,

and it completes the proof by limiting ε→ 0.

Corollary 4.3. If G is a locally compact abelian group, then pG is also a locally compact abelian group.

Example 4.1 (Real line). We have an isomorphism of topological groups R ∼= pR : t 7→ ei t x . The group
R is additive, and the group pR is multiplicative. The only non-trivial argument is the surjectivity. If
χ ∈ pR, then there is ε > 0 such that c :=

∫ ε

0 χ(x) d x 6= 0, and

∫ ε

0

χ(x) d x =

∫ y+ε

y

χ(x − y) d x = χ(y)−1

∫ y+ε

y

χ(x) d x .

By differentiating with respect to y , we get a differential equation

χ ′(y) = c−1(χ(y + ε)−χ(y)) = c−1(χ(ε)− 1)χ(y),

therefore, χ(0) = 1 and |χ(x)|= 1 implies χ(x) = ei t x for some t ∈ R.

Example 4.2 (Circle and integer). Using the above result, we can also show pT∼= Z. From the identifi-
cation T= R/2πZ, a character χ of T can be characterized as a character ei t x of R that factors through
T, which means ei t x = 1, and it is equivalent to t ∈ 2πZ. The characters of Z is parametrized by the
value at one, so pZ∼= T.

We now define the Fourier transform. For clarity, we use the curly alphabet F instead of the hat
notation pf for Fourier transforms.

Definition 4.2 (Fourier transform). Let G be a locally compact abelian group, and pG be its dual group.
Let f ∈ L1(G). The Foureir transform is a linear operator F : L1(G)→ CpG defined by

F f (χ) :=

∫

G

χ(x) f (x) d x

for χ ∈ pG. The extended Fourier transform for measures F : M(G)→ CpG is called the Fourier-Stieltjes
transform and given by

Fµ(χ) :=

∫

G

χ(x) dµ(x)

for χ ∈ pG, where M(G) denotes the space of all finite complex regular Borel measures; it is the complex
linear span of Prob(G). We will also often use the adjoint Fourier transform F∗ : M(pG)→ C

p

pG defined
by

F∗µ(x) :=

∫

pG

x(χ) dµ(χ)

for x ∈ p

pG. Note that the Fourier transform of functions in L1(pG) depends on the choice of Haar measure
dχ on pG, up to constant, and the reasonable constant will be determined by the Fourier inversion
theorem in Section 4.3.
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The notion of the following canonical homomorphism will be useful in the analysis of Fourier trans-
forms on a locally compact abelian group.

Definition 4.3 (Canonical homomorphism). Let G be a locally compact abelian group, and p

pG be its
double dual group. We define the canonical homomorphism of G to be the map Φ : G → p

pG such that
Φ(x)(χ) := χ(x).

Note that we do not have any additional information about the homomorphism Φ for now. None of
injectivity, surjectivity, and continuity can be deduced by simple arguments at this stage. The goal of
this thesis paper is to verify that Φ is a topological isomorphism.

We can embed G into the algebra M(G) by Dirac measures. One way to understand the Fourier
transform is a lifting of the canonical homomorphism Φ : G→ p

pG, as described in the following commu-
tative diagram:

G p

pG

M(G) C
p

pG .

← →Φ

←
-→ ←

-
→

←→F∗

The idea of considering the Fourier transform as the extension of the canonical homomorphism from G
to its double dual group p

pG provides a fundamental framework for the general theory of commutative
Banach algebras; the Gelfand transform. For a commutative Banach algebra A, an element a ∈ A
defines a function pa : pA→ C : ϕ 7→ ϕ(a) by evaluation at a. This function is continuous by definition
of the weak∗ topology and and vanishes at infinity since the set {ϕ ∈ pA : |ϕ(a)| ≥ ε } is weak∗ compact
for any a ∈A and ε > 0. This defines an algebra homomorphism

Γ : A→ C0( pA) : a 7→ pa,

and this homomorphism is called the Gelfand transform. It is not hard to see that when A= L1(G) the
Gelfand transform Γ : L1(G)→ C0(L1(G)p) corresponds to the adjoint Fourier transform F∗ : L1(G)→
C0(pG) under the identification C0(L1(G)p)

∼
−→ C0(pG).

We state some basic properties of Fourier transform in the following propositions:

Proposition 4.4. Let G be a locally compact abelian group.

(a) For µ,ν ∈ M(G), F(µ ∗ ν) = FµFν.

(b) For µ ∈ M(pG) and ν ∈ M(G),
∫

pG Fν(χ) dµ(χ) =
∫

G Fµ(Φ(x)) dν(x).

(c) If f ∗(x) := f (x−1) for f ∈ L1(G), then F f ∗(χ) = F f (χ).

Proof. (a) We have

F(µ ∗ ν)(χ) =
∫∫

G2

χ(x y) dµ(x) dν(y) = Fµ(χ)Fν(χ).

(b) We have
∫

pG

Fν(χ) dµ(χ) =
∫

pG

∫

G

χ(x) dν(x) dµ(χ)

=

∫

G

∫

pG

χ(x) dµ(χ) dν(x)

=

∫

G

Fµ(Φ(x)) dν(x).

(c) We have

F f ∗(χ) =

∫

G

χ(x) f (x−1) d x =
�

∫

G

χ(x−1) f (x) d x
�−
= F f (χ).
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Proposition 4.5. Let G be a locally compact abelian group. Let Φ : G → p

pG be the canonical homomor-
phism, and denote (Φ∗ f )(x) := f (Φ(x)).

(a) F : L1(G)→ C0(pG) is well-defined.

(b) F : L1(G)→ C0(pG) has dense image.

(c) Φ∗ ◦F∗ : M(pG)→ Cb(G) is well-defined.

(d) Φ∗ ◦F∗ : M(pG)→ Cb(G) is injective.

Proof. (a) The vanishing at infinity and the continuity of F f for f ∈ L1(G) are due to the fact that the
(adjoint) Fourier transform coincides with the Gelfand representation of commutative Banach algebras.

(b) Since L1(G) is closed under convolution and the involution defined as f ∗(x) := f (x−1), the
image F(L1(G)) is a ∗-subalgebra of C0(pG). It separates points and vanishes nowhere since for χ1 6=
χ2 ∈ pG we have f ∈ L1(G) such that

∫

(χ1 −χ2)(x) f (x) d x 6= 0,

so F(L1(G)) is dense in C0(pG) by the Stone-Weierstrass theorem.
(c) Because the boundedness is clear from the inequality |

∫

pG χ(x) dµ(χ)| ≤ ‖µ‖M(pG), it suffices
to show Φ∗ ◦ F∗µ is continuous for µ ∈ M(G). We may suppose µ ≥ 0 and µ(pG) = 1. By the inner
regularity, for any ε > 0 there is a compact set K ⊂ pG such that µ(K)> 1− ε

4 .
We claim

W := {x ∈ G : sup
χ∈K
|χ(x)− 1|<

ε

2
}

is an open neighborhood of the identity e ∈ G. (In fact, we can show that W is open) Note that
G × pG→ T : (x ,χ) 7→ χ(x) is continuous since for each χ ∈ pG there exists f ∈ L1(G) with F f (χ) 6= 0
and we have χ(x) = F(Lx f )(χ)/F f (χ). Thus, for each η ∈ K we can find an open set Uη×Vη ∈ G× pG
such that (e,η) ∈ Uη× Vη and |χ(x)−1|< ε

2 for all (x ,χ) ∈ Uη× Vη. By the compactness of K , we can
choose a finite sequence (η j)nj=1 such that the union of Vη j

covers K . If x ∈
⋂n

j=1 Uη j
, then for any χ,

since there is j such that χ ∈ Vη j
, so (x ,χ) ∈ Uη j

× Vη j
implies |χ(x)− 1| < ε

2 . It means an open set
⋂n

j=1 Uη j
is a subset of W containing e, so W is a neighborhood of e ∈ G.

If xα→ e in G so that xα eventually in W , then since xα ∈W implies

|Φ∗ ◦F∗µ(xα)− 1| ≤
∫

K

|χ(xα)− 1| dµ(χ) +
∫

pG\K
|χ(xα)− 1| dµ(χ)<

ε

2
+ 2 ·

ε

4
= ε,

we are done by limiting ε→ 0 for

limsup
α
|Φ∗ ◦F∗µ(xα)− 1| ≤ ε.

(d) If µ ∈ M(pG) satisfies Φ∗ ◦F∗µ(x) =
∫

pG χ(x) dµ(χ) = 0 for all x ∈ G, then we have
∫

pG

F f (χ) dµ(χ) =

∫

G

Fµ(Φ(x)) f (x) d x = 0=

∫

G

(

∫

pG

χ(x) dµ(χ))− f (x) d x = 0

for all f ∈ L1(G). Since F(L1(G)) is dense in C0(pG), we have µ= 0.

Remark. The injectivity of F on L1(G) is a difficult problem. We can show it as a corollary of the part
(d) of the above theorem if Φ is injective. However, the injectivity of the canonical homomorphism is
equivalent to either the Gelfand-Raikov theorem for abelian groups or the locally compact version of the
Peter-Weyl theorem, which states the dual group pG separates points G. It is remarkable to compare with
standard texts in which we prove that the Fourier transforms F : L1(R)→ C0(R) and F : L1(T)→ c0(Z)
are injective by using summability methods. This is one direction of the Pontryagin duality theorem,
and we will prove it in Section 4.3 via the Fourier inversion theorem.
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We finally prove Bochner’s theorem. In Chapter 2 and Chapter 3, we constructed a measure indi-
rectly as a weak∗ limit, but here we will directly define a positive linear functional on a continuous
function space to show the existence of a measure.

Theorem 4.6 (Bochner’s theorem). Let G be a locally compact abelian group. A function f : G → C is
continuous and positive definite if and only if there is a unique non-negative µ ∈ M(pG) such that

f (x) =

∫

pG

χ(x) dµ(χ)

for all x ∈ G.

Proof. (⇐) The continuity is trivially satisfied. The positive definiteness is also clear from the fact that
n
∑

k,l=1

f (x−1
l xk)ξkξl =

∫

pG

�

�

�

n
∑

k=1

χ(xk)ξk

�

�

�

2
dµ(χ)≥ 0.

(⇒) The uniqueness directly follows from the parts (d) of Proposition 4.5. We will show the exis-
tence of µ. We claim the inequality

|
∫

G

g(x) f (x) d x | ≤ ‖F g‖C0(pG)

for g ∈ L1(G). Then, although we do not know whether F : L1(G)→ C0(pG) is injective, we can define

F g 7→
∫

G

g(x) f (x) d x

the linear functional on F(L1(G)) that is bounded with respect to the uniform norm induced from
C0(pG), and its norm is less than or equal to ‖ f ‖Cb(G) = f (e).

If the claim is true, then since F(L1(G)) is dense in C0(pG), there is a unique bounded linear func-
tional on C0(pG) that extends the above linear functional, so we have a complex measure µ ∈ M(pG)
such that

∫

G

g(x) f (x) d x =

∫

pG

F g(χ) dµ(χ) =

∫

G

g(x)

∫

pG

χ(x) dµ(χ) d x

for all g ∈ L1(G), which implies the equation in the Bochner theorem. Finally,

f (e) = µ(pG)≤ ‖µ‖M(pG) ≤ ‖ f ‖Cb(G) = f (e)

concludes the non-negativity of µ, so we are done.
Now we prove the claim. Since the positive definiteness of f implies that

〈g, h〉 f :=

∫

G

h∗ ∗ g(x) f (x) d x =

∫∫

G2

h(y)g(x) f (y−1 x) d x d y

is a positive semi-definite Hermitian form, where we denote h∗(x) := h(x−1), we have by the Schwarz
inequality and by using the approximate identity that

|
∫

G

g(x) f (x) d x |2 ≤ ‖ f ‖Cb(G)

∫

G

g∗ ∗ g(x) f (x) d x .

Applying this inequality inductively, we get

|
∫

G

g(x) f (x) d x | ≤ ‖ f ‖1−1/2n

Cb(G)

�

∫

G

(g∗ ∗ g)∗2
n−1
(x) f (x) d x

�1/2n

≤ ‖ f ‖Cb(G)‖(g
∗ ∗ g)∗2

n−1
‖1/2n

L1(G)

→ ‖ f ‖Cb(G)‖F(g
∗ ∗ g)‖1/2

C0(pG)
= ‖ f ‖Cb(G)‖F g‖C0(pG)

as n→∞ by Gelfand’s formula of the spectral radius. Consequently, the claim is true.
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4.2 Proof by the Gelfand-Naimark-Segal construction

We give in this section a representation-theoretic proof of Bochner’s theorem. Before we give a precise
formulation, we define several notions of representations of locally compact abelian groups.

Definition 4.4 (Strongly continuous unitary representation). Let G be a locally compact abelian group.
A strongly continuous unitary representation or just a representation of G is a continuous group homo-
morphism ρ : G → U(H), where U(H) denotes the group of unitary operators on a Hilbert space H
with the strong operator topology.

Definition 4.5 (Cyclic representation). Let G be a locally compact abelian group. A cyclic representation
of G is a representation ρ : G → U(Hρ) for which there exists a vector ψρ ∈ Hρ called a cyclic vector
that satisfies the closed linear span of ρ(G)ψρ is equal to Hρ. A pointed cyclic representation of G is a
pair (ρ,ψρ) of a cyclic representation ρ of G and a unit cyclic vector ψρ ∈ Hρ.

Definition 4.6 (Unitary equivalence). Let (ρ1,ψ1) and (ρ2,ψ2) be pointed cyclic representations of a
locally compact abelian group G. We say that they are unitarily equivalent if there is a unitary operator
u : Hρ1

→ Hρ2
such that ρ2(x) = uρ1(x)u∗ for all x ∈ G and ψ2 = uψ1.

Now, we need to figure out the maps that connect measures, positive definite functions, and repre-
sentations. The idea is based on a famous result of C∗-algebra theory called the Gelfand-Naimark-Segal
representation, ot the GNS representation. The GNS representation is a construction method of cyclic
representations of a C∗-algebra from a normalized positive linear functional, which is called a state
in the C∗-algebra theory. In commutative C∗-algebras, the positive linear functional is nothing but the
finite regular Borel measure on a locally compact Hausdorff space, so the GNS construction can be para-
phrased into a mapping that sends a probability regular Borel measure to a cyclic representation. For
details on the general non-commutative GNS representation, see Chapter 3 and 5 in [8]. We are not go-
ing to use the general theory of C∗-algebras, but follow and apply the key idea of the GNS construction
directly on the commutative C∗-algebra C0(pG).

Definition 4.7 (Representations of C∗-algerbas). Let A be a C∗-algerba. A strongly continuous repre-
sentation or just a representation of A is a continuous ∗-homomorphism π : A→ B(Hπ), where B(Hπ)
is the algebra of bounded linear operators on a Hilbert space Hπ with the strong operator topology.

We say a representation π : A→ is cyclic if there exists a vector ψπ ∈ Hπ such that the closure of
π(A)ψπ is equal to Hπ. A pointed cyclic representation of A is a pair (π,ψπ) of a cyclic representation
of A and a unit cyclic vectorψπ ∈ Hπ. For pointed cyclic representations (π1,ψ1) and (π2,ψ2), we say
they are unitarily equivalent if there is a unitary operator u : Hπ1

→ Hπ2
such that π2(a) = uπ1(a)u∗

for all a ∈A and ψ2 = uψ1.

Remark. The continuity condition for a representation A → B(H) of a C∗-algebra A is redundant. It
is because every ∗-homomorphism between C∗-algebras is norm-decreasing. Since the strong operator
topology is weaker than the norm topology, boundedness implies the continuity.

The following commutative diagram might be helpful to understand our picture.

�

regular Borel
probability measures on pG

� �

unitary equivalence classes of
pointed cyclic representations of C0(pG)

�

�

normalized continuous
positive definite functions on G

� �

unitary equivalence classes of
pointed cyclic representations of G

�

← →GNS

←→Φ∗◦F∗ ←→ surjective ?

← →“GNS”

One of our goals in the rest of this section is to verify that the two horizontal arrows in the above diagram
are bijective. Then, we set the vertical arrow on the left side to be the adjoint Fourier transform. After
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that, if we were to show the vertical arrow on the right side which makes the diagram commute is a
bijection, then the Bochner theorem would follow. However, the surjectivity of the vertical arrow on
the right side is tough to be proved directly. If we try to construct a representation of C0(pG) from a
representation of G, we encounter an approximation problem: we have to find a suitable notion of
convergence in Cb(pG) to approximate ϕ ∈ C0(pG) by a net ϕα ∈ spanΦ(G). These kinds of technical
issues with regard to the Fourier transformation of non-integrable functions on pG such as Φ(x), which
are traced back to the main difficulties in the proof of Bochner’s theorem in Section 4.1.

Instead, we will prove the Bochner theorem by showing that the extreme points of the set of nor-
malized continuous positive definite functions on G is in fact the union pG ∪ {0} of the dual group and
a singleton. Here is the place where we use the representation theory. Then, by applying the Krein-
Milman theorem, we finish the proof of surjectivity.

The most important step is to show that an extreme point is indeed a character, for which we use
the horizontal arrow named the “GNS construction” in the second row. It is not the authentic GNS
construction because it does not provide a representation of a C∗-algebra but of a group G, or its
convolution algebra L1(G), which is not a C∗-algebra. Nevertheless, we can mimic the idea to construct
a cyclic representation of a locally compact abelian group G, which will be addressed in Theorem 4.8.
We first establish the one-to-one correspondence between regular Borel measures on pG and the unitary
equivalence classes of pointed cyclic representations of C0(pG). We will not use the general theory of
C∗-algebra in order to see every step in the ideas of GNS construction.

Theorem 4.7 (GNS representation for regular Borel measures). Let G be a locally compact abelian group.
Then, there is a one-to-one correspondence

�

regular Borel
probability measures on pG

�

∼
−→
�

unitary equivalence classes of
pointed cyclic representations of C0(pG)

�

.

Proof. (Well-definedness) We will define the map in the statement of the theorem, which turns out to
be identical to the the GNS representation of the C∗-algebra C0(pG). Let µ be a regular Borel probability
measure on pG (it is a state of C0(pG), by the Riesz-Markov-Kakutani representation theorem). Then, µ
defines a positive semi-definite Hermitian form on C0(pG) by

〈γ,η〉µ :=

∫

pG

η(χ)γ(χ) dµ(χ).

The left kernel of µ is defined as the set Lµ of elements of C0(pG) that have zero as the value of the
Hermitian form defined by µ, and it is equal to the kernel of the restriction operator onto the support
of µ;

Lµ := { f ∈ C0(pG) :

∫

| f |2 dµ= 0 }= { f ∈ C0(pG) : f |suppµ = 0 }.

Recall that one way to describe the support of a non-negative measure µ is the complement of the union
of all open null sets. Therefore, since the restriction C0(pG)→ C0(suppµ) is surjective by the Urysohn
lemma, we obtain the isomorphism C0(pG)/Lµ ∼= C0(suppµ). If we induce the Hermitian for 〈−,−〉µ
on C0(suppµ), then it becomes positive definite; an inner product. We can complete the inner product
space C0(suppµ) to obtain the Hilbert space Hµ = L2(suppµ,µ).

The Gelfand-Naimark-Segal representation of C0(pG) with respect to µ is now the ∗-algebra homo-
morphism

πµ : C0(pG)→ B(Hµ) : ϕ 7→ Mϕ,

where Mϕ denotes the multiplication operator such that Mϕ(γ) = ϕγ. This ∗-homomorphism is a
representation, that is, strongly continuous because if ϕn→ ϕ ∈ C0(pG), then

‖Mϕn
γ−Mϕγ‖2

Hµ
=

∫

suppµ

|(ϕn −ϕ)(χ)γ(χ)|2 dµ(χ)≤ ‖ϕn −ϕ‖2
C(suppµ) · ‖γ‖

2
Hµ
→ 0.
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If we let ψµ := 1suppµ ∈ Hµ, then it is a unit cyclic vector because πµ(C0(pG))ψµ = C(suppµ) is dense
in Hµ, so the pair (πµ,ψµ) is a pointed cyclic representation of C0(pG). We call this cyclic vector ψµ the
canonical cyclic vector, and we assign the unitary equivalence class of (πµ,ψµ) to the measure µ.

(Injectivity) Suppose we have two regular Borel probability measures µ1 and µ2 on pG such that
the pointed cyclic representations (πµ1

,ψµ1
) and (πµ2

,ψµ2
) of C0(pG) defined as above are unitarily

equivalent. Let u : Hµ1
→ Hµ2

be a unitary operator such that πµ2
(ϕ) = uπµ1

(ϕ)u∗ for all ϕ ∈ C0(pG)
and ψµ2

= uψµ1
. Then,

uπ f1(ϕ)ψ f1 = π f2(ϕ)uψ f1 = π f2(ϕ)ψ f2

implies
∫

pG

ϕ(χ) dµ1(χ) = 〈πµ1
(ϕ)ψµ1

,ψµ1
〉Hµ1

= 〈uπµ1
(ϕ)ψµ1

, uψµ1
〉Hµ1

= 〈πµ2
(ϕ)ψµ2

,ψµ2
〉Hµ2

=

∫

pG

ϕ(χ) dµ2(χ)

for ϕ ∈ C0(pG), and it proves µ1 = µ2 as bounded linear functionals on C0(pG).
(Surjectivity) Let (π,ψ) be a pointed cyclic representation of C0(pG) with the underlying Hilbert

space H. Then, since C0(pG) → C : ϕ 7→ 〈π(ϕ)ψ,ψ〉H is a linear functional and has norm one since
it satisfies that |〈π(ϕ)ψ,ψ〉H | ≤ ‖π‖‖ϕ‖C0(pG)

‖ψ‖2
H ≤ ‖ϕ‖C0(pG)

and limα〈π(eα)ψ,ψ〉H = 〈ψ,ψ〉H = 1

where eα denotes an approximate identity of C0(pG). The bound ‖π‖ ≤ 1 is due to the fact that every
∗-homomorphism between C∗-homomorphism has at most norm one. Therefore, by the Riesz-Markov-
Kakutani representation theorem, there is a regular Borel probability measure µ on pG such that

〈π(ϕ)ψ,ψ〉H =
∫

pG

ϕ(χ) dµ(χ)

for all ϕ ∈ C0(pG).
With this measure µ, construct a pointed cyclic representation (πµ,ψµ) of C0(pG) as we did above.

Define a bounded linear operator

u : H → Hµ : π(ϕ)ψ 7→ πµ(ϕ)ψµ

using the cyclicity of π. Then, u is a unitary operator since it is an isometry by

‖πµ(ϕ)ψµ‖2
Hµ
=

∫

pG

|ϕ(χ)|2 dµ(χ) = 〈π(|ϕ|2)ψ,ψ〉H = ‖π(ϕ)ψ‖2
H ,

and since it is surjective by the cyclicity of πµ. Because ψµ = uψ and

[u∗πµ(ϕ)u](π(γ)ψ) = u∗πµ(ϕ)πµ(γ)ψµ = u∗πµ(ϕγ)ψµ = π(ϕγ)ψ= π(ϕ)(π(γ)ψ)

for ϕ,γ ∈ C0(pG), u is a unitary equivalence between the pointed cyclic representations π and πµ.

The next step is to apply the same idea to positive definite functions. The statement and the proof
of the “GNS representation theorem” for positive definite functions is as follows:

Theorem 4.8 (“GNS representation” for positive definite functions). Let G be a locally compact abelian
group. Then, there is a one-to-one correspondence

�

normalized continuous
positive definite functions on G

�

∼
−→
�

unitary equivalence class of
pointed cyclic representations of G

�

.
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Proof. (Well-definedness) We first define the map that sends a normalized continuous positive definite
function on G to a pointed cyclic representation of G. Let f be a continuous positive definite function
on G such that ‖ f ‖Cb(G) = f (e) = 1. The function f defines a positive semi-definite Hermitian form on
L1(G) given by

〈g, h〉 f :=

∫

G

h∗ ∗ g(y) f (y) d y =

∫∫

G2

h(z−1)g(y) f (z y) dz d y.

Define the left kernel
L f := { g ∈ L1(G) : 〈g, g〉 f = 0 }.

Then, by the Cauchy-Schwarz inequality, the Hermitian form induces another Hermitian form on L1(G)/L f

that is positive definite, in other words, an inner product. Complete the inner product space L1(G)/L f

to define a Hilbert space H f , and denote the inner product by 〈−,−〉H f
.

For each x ∈ G, we can uniquely define a bounded linear operator ρ f (x) ∈ B(H f ) such that

ρ f (x)(g + L f ) = Lx g + L f

for g + L f ∈ L1(G)/L f , where Lx g(y) = g(x−1 y), because the identity

‖ρ f (x)(g + L f )‖2
H f
= ‖Lx g + L f ‖2

H f
= ‖Lx g‖2

f

=

∫∫

G2

Lx g(z−1)Lx g(y) f (z y) dz d y

=

∫∫

G2

g(x−1z−1)g(x−1 y) f (z y) dz d y

=

∫∫

G2

g(z−1)g(y) f ((zx−1)(x y)) dz d y

= ‖g‖2
f = ‖g + L f ‖2

H f

proves the boundedness of ρ f (x). We claim that ρ f : G→ B(H f ) is a cyclic representation.
It is a group homomorphism since the identity ρ f (x y) = ρ f (x)ρ f (y) for bounded linear operators

on L1(G)/L f is extended to H f . It is unitary because it is an isometry by the above identity and ρ f (x)
has its inverse ρ f (x−1). It is strongly continuous because if a net xα ∈ G converges to the identity e,
then the inequality

|〈g, h〉 f | ≤
∫∫

G2

|h(z−1)g(y) f (z y)| dz d y ≤
∫

G

|h(z−1)| dz

∫

G

|g(y)| d y = ‖h‖L1(G)‖g‖L1(G)

implies
‖(ρ f (xα)− idH f

)(g + L f )‖H f
= ‖Lxα g − g‖ f ≤ ‖Lxα g − g‖L1(G)→ 0.

Finally, it is cyclic with a cyclic vector ψ f ∈ H f defined by the weak∗ limit of a net eα + L f , where
eα is an approximate identity of L1(G). The limit uniquely exists since we have

〈eα + L f , g + L f 〉H f
= 〈eα, g〉 f =

∫

G

g∗ ∗ eα(y) f (y) d y →
∫

G

g∗(y) f (y) d y

for each g+ L f ∈ L1(G)/L f and ‖eα+ L f ‖H f
= ‖eα‖ f ≤ ‖eα‖L1(G) = 1 is uniformly bounded. The vector

ψ f is cyclic because if g + L f ∈ L1(G)/L f satisfies 〈ρ f (x)ψ f , g + L f 〉H f
= 0 for all x ∈ G, then

0= 〈ψ f , Lx−1 g + L f 〉H f
= lim

α
〈eα, Lx−1 g〉 f =

∫

G

g(x y) f (y) d y =

∫

G

g(y) f (x−1 y) d y
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implies

0=

∫

G

g(x)

∫

G

g(y) f (x−1 y) d y d x = 〈g, g〉 f ,

and it means the set {ρ f (x)ψ f : x ∈ G } is dense in H f . Furthermore, since

〈ρ f (x)ψ f ,ψ f 〉H f
= lim
α,β
〈Lx eα, eβ 〉

= lim
α,β

∫∫

G2

eβ (z−1)eα(x
−1 y) f (z y) dz d y

= lim
α,β

eα ∗ eβ ∗ f (x) = f (x),

we have ‖ψ f ‖H f
=
p

f (e) = 1. Therefore, (ρ f ,ψ f ) is a pointed cyclic representation of G.
(Injectivity) Suppose we have two normalized continuous positive functions f1 and f2 on G such that

the pointed cyclic representations (ρ f1 ,ψ f1) and (ρ f2 ,ψ f2) defined as above are unitarily equivalent.
Let u : H f1 → H f2 be a unitary operator such that ρ f2(x) = uρ f1(x)u

∗ for all x ∈ G and ψ f2 = uψ f1 .
Then,

uρ f1(x)ψ f1 = ρ f2(x)uψ f1 = ρ f2(x)ψ f2

implies

f1(x) = 〈ρ f1(x)ψ f1 ,ψ f1〉H f1
= 〈uρ f1(x)ψ f1 , uψ f1〉H f1

= 〈ρ f2(x)ψ f2 ,ψ f2〉H f2
= f2(x).

(Surjectivity) Let (ρ,ψ) be a pointed cyclic representation of G with the underlying Hilbert space
H. Then, because ρ is continuous with respect to the strong operator topology of B(H) and

n
∑

k,l=1

〈ρ(x−1
l xk)ψ,ψ〉Hξkξl =

n
∑

k=1

‖ξkρ(xk)ψ‖2
H ≥ 0

for all (x1, · · · , xn) ∈ Gn and (ξ1, · · · ,ξn) ∈ Cn, the function

f : G→ C : x 7→ 〈ρ(x)ψ,ψ〉

is continuous and positive definite.
Let (ρ f ,ψ f ) be the pointed cyclic representation of G defined as above. Define a bounded linear

operator
u : H → H f : ρ(x)ψ 7→ ρ f (x)ψ f

using the cyclicity of ρ. Then, u is an isometry since the identity

〈ρ f (x)ψ f ,ρ f (y)ψ f 〉H f
= 〈ρ f (y

−1 x)ψ f ,ψ f 〉H f
= f (y−1 x) = 〈ρ(y−1 x)ψ,ψ〉H = 〈ρ(x)ψ,ρ(y)ψ〉H

for x , y ∈ G implies

‖
n
∑

k=1

akρ f (xk)ψ f ‖2
H f
= ‖

n
∑

k=1

akρ(xk)ψ‖2
H ,

and surjective since the range of u contains the linear span of uρ(x)ψ= ρ f (x)ψ f for all x ∈ G, which
is dense in H f . Thus the operator u is a unitary operator. Because ψ f = uψ and

[u∗ρ f (x)u](ρ(y)ψ) = u∗ρ f (x)ρ f (y)ψ f = u∗ρ f (x y)ψ f = ρ(x y)ψ= ρ(x)(ρ(y)ψ)

for x , y ∈ G, u is a unitary equivalence between the pointed cyclic representations ρ and ρ f .

Definition 4.8 (Irreducible representations). Let G be a locally compact abelian group. We say that
a representation ρ : G → B(H) of G is irreducible if there is no non-trivial proper invariant closed
subspace K of H, that is, or equivalently, if there exists a representation ρK : G → B(K) satisfying
ρ(x)ξ= ρK(x)ξ for every ξ ∈ K .
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Lemma 4.9. Let G be a locally compact abelian group. A representation of G is irreducible if and only if
it is one-dimensional.

Proof. It is trivially true that a one-dimensional representation is irreducible. The proof of the converse
is based on Schur’s lemma, which needs the Borel functional calculus. Here we only sketch the idea of
the proof. We can find detailed formulations for the Borel functional calculus in [8] or [3].

If we assume a representation is not one-dimensional, then we can construct a self-adjoint operator
that is not a multiple of the identity in the range of the representation. By the Borel functional calculus of
this self-adjoint operator, we can find a non-trivial proper projection that commutes with all elements of
the range of the representation because the set of projections generate the whole von Neumann algebra
generated by the range of the representation. It means that the range of the projection is an invariant
subspace, and the irreducibility of the representation fails to hold.

Proof of Bochner’s theorem. Denote the set of continuous positive definite functions f on G such that
f (e) ≤ 1 and f (e) = 1 by P(G)0 and P(G)1, and the set of regular Borel measures µ ≥ 0 on pG such
that µ(pG)≤ 1 and µ(pG) = 1 by M(pG)+0 and M(pG)+1 , respectively. Then, P(G)0 and M(pG)+0 are compact
convex sets in the weak∗ topologies of L1(G)∗ and C0(pG)∗ by the Banach-Alaoglu theorem.

We will only prove the surjectivity of the adjoint Fourier transform Φ∗ ◦F∗ : M(pG)+1 → P(G)1. Since
the identity

∫

G

Φ∗ ◦F∗µ(x)g(x) d x =

∫

pG

F∗g(χ) dµ(χ)

for g ∈ L1(G) implies Φ∗ ◦ F∗ is continuous so that the image of M(pG)+0 is again a compact convex
set. Let f be a non-zero extreme point of P(G)0 so that f (e) = 1. Let (ρ f ,ψ f ) be the pointed cyclic
representation defined by the “GNS construction” from f .

Suppose ρ f is reducible so that the underlying Hilbert space H f is decomposed into non-trivial
invariant subspaces as H f = K ⊕ K⊥. We have a decomposition ψ f = aξ+ bξ⊥ for ξ ∈ K and ξ⊥ ∈ K⊥

and it satisfies a 6= 0 6= b because ψ f is a cyclic vector that cannot belong to either K or K⊥. We may
assume that a, b > 0 and ‖ξ‖H f

= ‖ξ⊥‖H f
= 1 so that a2 + b2 = 1. Define g(x) := 〈ρ f (x)ξ,ξ〉H f

and
g⊥ := 〈ρ f (x)ξ⊥,ξ⊥〉H f

, which are continuous and positive definite. Then, since ψ f is a cyclic vector,
we have

g(x)− g⊥(x) = 〈ρ f (x)aξ, a−1ξ〉H f
− 〈ρ f (x)bξ

⊥, b−1ξ⊥〉H f
= 〈ρ f (x)ψ f , a−1ξ− b−1ξ⊥〉H f

6= 0

for some x ∈ G, and
f (x) = 〈ρ f (x)ψ f ,ψ f 〉H f

= a2 g(x) + b2 g⊥(x)

implies that f is not extreme. Therefore, ρ f is irreducible.
Since the representation ρ f is one-dimensional, there is a character χ ∈ pG such that ρ f (x) = χ(x),

which is equal to the adjoint Fourier transform χ(x) = Φ∗ ◦ F∗δχ(x). It means that Φ∗ ◦ F∗(M(pG)+0 )
contains the extreme points of P(G)0, and by the Krein-Milman theorem, we conclude there is µ ∈
M(pG)+0 such that Φ∗ ◦F∗µ(x) = f (x). Putting x = e, we get 1= f (e) = Φ∗ ◦F∗µ(e) = µ(pG), hence we
get the surjectivity of Φ∗ ◦F∗ : M(pG)+1 → P(G)1.

4.3 The Pontryagin duality

One of the most well-known applications of the Bochner theorem is the Pontryagin duality, which states
that the canonical homomorphism Φ : G → p

pG for a locally compact abelian group G is always in fact
an isomorphism.

The Pontryagin duality is deeply related to the Fourier inversion theorem. In Section 4.1, we defined
the Fourier transform on G as an operator that maps a function on G to another function on pG. Then,
the composition of the Fourier transform and the adjoint Fourier transform maps a function on G to
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a function on the double dual p

pG. However, Bochner’s theorem tells us that if a function f on G is
continuous and positive definite, then f can be realized as the Fourier transform of a function on pG(a
measure is a function in a generalized sense), instead of another hypothetical group H such that pH = G.

Consider the case of G = R or T = R/2πZ. The Fourier inversion theorem and the theorems on
the convergence of Fourier series state that from a Fourier transformed function F f on pG ∼= R or Z, we
can reconstruct the original function f by the adjoint Fourier transform. In other words, although the
domain of F∗F f is in principle p

pG, but it can be identified with the original function f on the original
group G. Furthermore, in a suitable setting of function spaces such as the L2 space or the Schwartz
space, the adjoint Fourier transform F∗ plays a role of the inverse Fourier transform F−1.

We are interested in the generalization of the recovery of the original group from the dual group
pG. This kind of question of recovery is called duality, and one of the most classical results of this kind
is the Pontryagin duality. The duality for compact second countable abelian groups was proved by
Pontryagin [11] in 1934, and van Kampen [14] generalized the result in the following year for the case
of locally compact abelian groups. Nowadays, the Pontryagin duality refers to the duality result for
locally compact abelian groups.

For a locally compact abelian group G, we can infer from Bochner’s theorem a process to pullback
the doubly-Fourier-transformed function on p

pG to the original group G does not lose informtation of the
original function. To see this, we reformulate Bochner’s theorem in terms of a newly defined algebra
of functions as follows:

Definition 4.9 (Fourier-Stieltjes algebra). Let G be a locally compact abelian group. The Fourier-
Stieltjes algebra B(G) is the linear span of the continuous positive definite functions on G. Note that
B(G)∩M(G) = B(G)∩ L1(G).

Corollary 4.10 (A reformulation of Bochner’s theorem). Let G be a locally compact abelian group, and
Φ : G → p

pG be the canonical homomorphism. Then, Φ∗ ◦ F∗ : M(pG) → B(G) is a well-defined algebra
isomorphism.

The space B(G)∩ L1(G) replaces the Schwartz space in the classical theory of Fourier transforms on
the Euclidean spaces. Note that we do not have differential structure and the notion of decay growths
on G. Intuitively, the inverse of M(pG) → B(G) is used to control the L1(pG)-norm of the transformed
function F f for f ∈ B(G)∩ L1(G).

Classical Fourier inversion theorems on R and Z go further than Bochner’s theorem; not only is
the Fourier transform bijective, but the inverse is given by its adjoint. Standard proofs of the Fourier
inversion theorem on R use the scaling of R by scalar multiplication, and the differentiable structure.
Standard results on the convergence theorem of Fourier series also use several approximate identities
such as the Dirichlet kernel and the Fejér kernel. They cannot be generalized to the case of locally com-
pact abelian groups G, so we should find a method for our proof. The inversion theorem is rigorously
stated and proved as follows:

Theorem 4.11 (Fourier inversion). Let G be a locally compact abelian group, and pG be its dual group.
By adjusting the constant of a Haar measure on pG, called the dual measure of the Haar measure d x of G,
the following statements hold:

(a) For f ∈ B(G)∩ L1(G), we have F f ∈ B(pG)∩ L1(pG) and Φ∗ ◦F∗ ◦F f = f .

(b) For ϕ ∈ B(pG)∩ L1(pG), we have F∗ ◦Φ∗ ◦Fϕ = ϕ

Proof. (a) Without loss of generality, assume f ∈ B(G)+ ∩ L1(G), where B(G)+ denotes the space of all
continuous positive definite functions on G. By the Bochner theorem, there is a non-negative measure
µ ∈ M(pG) such that

f (x) = Φ∗ ◦F∗µ(x) =
∫

pG

χ(x) dµ(χ).
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Our claim is that there is a Haar measure dχ on pG such that dµ(χ) = F f (χ) dχ. If we show this, then
both conclusions follow immediately.

Define a linear functional I : Cc(pG)→ C such that for each ϕ ∈ Cc(pG) we have

I(ϕ) :=

∫

pG

ϕ(χ)
dµ(χ)
F f (χ)

,

where f ∈ B(G)+ ∩ L1(G) such that F f > 0 on suppϕ. We claim that such f always exists for any
choice of suppϕ and I is independent of f .

Let h ∈ Cc(G) such that Fh(e) =
∫

G h(x) d x 6= 0. Then, the convolution h∗ ∗h is contained in Cc(G)

and F(h∗ ∗h) = |Fh|2, where h∗(x) := h(x−1). Using the continuity of Fh, take an open neighborhood
V of e ∈ pG such that Fh(χ) 6= 0 for all χ ∈ V . For a finite sequence {χi}ni=1 such that suppϕ ⊂

⋃

i Vχi ,
define fi(x) := χi(x)(h∗ ∗ h)(x) and f =

∑

i fi . Then, f can be verified to be in Cc(G) and

F fi(χ) = F(h∗ ∗ h)(χ−1
i χ) = |Fh(χ−1

i χ)|
2 > 0

for χ ∈ Vχi implies F f > 0 on suppϕ. The function f is also positive definite because F f is the sum
of non-negative functions(We can show directly without Bochner’s theorem).

Let f , g ∈ B(G)+∩L1(G) such that F f ,F g > 0 on suppϕ. Let µ,ν ∈ M(pG) be such that Φ∗◦F∗µ= f
and Φ∗ ◦F∗ν= g, taken by the Bochner theorem. For any h ∈ L1(G), we have

∫

pG

Fh(χ)F g(χ) dµ(χ) =

∫

pG

F(h ∗ g)(χ) dµ(χ)

=

∫

G

h ∗ g(x)Fµ(Φ(x)) d x

=

∫

G

h ∗ g(x) f (x−1) d x

= h ∗ g ∗ f (e),

and it implies by the symmetry of convolution that
∫

pG

Fh(χ)F g(χ) dµ(χ) =

∫

pG

Fh(χ)F f (χ) dν(χ).

Since the set of Fh for h ∈ L1(G) is dense in C0(pG), we get F g(χ) dµ(χ) = F f (χ) dν(χ), which proves
the well-definedness of I .

The next step is to show that I is translation-invariant: for ϕ ∈ Cc(pG) and η ∈ pG, and for f ∈
B(G)+ ∩ L1(G) such that F f > 0 on suppϕ ∪ supp Lηϕ, where Lηϕ(χ) := ϕ(η−1χ), we have

I(Lηϕ) =

∫

pG

ϕ(η−1χ)
dµ(χ)
F f (χ)

=

∫

pG

ϕ(χ)
dµ(ηχ)
F f (ηχ)

= I(ϕ)

since the last equality is due to

Φ∗ ◦F∗(dµ(ηχ))(x) =
∫

pG

χ(x) dµ(ηχ) =

∫

pG

(η−1χ)(x) dµ(χ) = η−1(x) f (x)

and

F(η−1 f )(χ) =

∫

G

χ(x)η−1(x) f (x) d x =

∫

G

(ηχ)(x) f (x) d x = F f (ηχ).

Therefore, dµ/F f is equal to a Haar measure dχ of pG on suppF f , hence µ(χ) = F f (χ) dχ.
(b) Note that we can slightly modify the Bochner theorem to have an algebra isomorphism Φ∗ ◦F :

M(ppG)→ B(pG). From the part (a), we have Fϕ ∈ L1(ppG) so that Φ∗ ◦Fϕ ∈ B(G)∩ L1(G) and

Φ∗ ◦F ◦ (F∗ ◦Φ∗ ◦F)ϕ = (Φ∗ ◦F ◦F∗) ◦Φ∗ ◦Fϕ = Φ∗ ◦F∗ϕ,

hence we get F∗ ◦Φ∗ ◦Fϕ = ϕ by the injectivity of Φ∗ ◦F .
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Theorem 4.12 (Plancherel’s theorem). Let G be a locally compact abelian group, and pG be its dual group
with the dual measure. Then,

‖F f ‖L2(pG) = ‖ f ‖L2(G)

for f ∈ L2(G)∩ L1(G).

Proof. The convolution f ∗ ∗ f is in L1(G) since f and f ∗ are in L1(G) and satisfies F( f ∗ ∗ f ) = |F f |2,
where f ∗(x) := f (x−1) for x ∈ G. It is also continuous because the translation is continuous in L1(G),
and is positive definite because

n
∑

k,l=1

f ∗ ∗ f (x−1
l xk)ξkξl =

n
∑

k,l=1

∫

G

f (y−1) f (y−1 x−1
l xk)ξkξl d y

=
n
∑

k,l=1

∫

G

ξl f (y−1 x l)ξk f (y−1 xk) d y

=

∫

G

�

�

�

n
∑

k=1

ξk f (y−1 xk)
�

�

�

2
d y ≥ 0.

By the Fourier inversion theorem, we have
∫

G

| f (y−1)|2 d y = f ∗ ∗ f (e) = F∗F( f ∗ ∗ f )(e) =

∫

pG

F( f ∗ ∗ f )(χ) dξ=

∫

pG

|F f (χ)|2 dξ.

Finally, we can prove the Pontryagin duality theorem.

Theorem 4.13 (Pontryagin duality). Let G be a locally compact abelian group, and pG be its dual group.
Then, the canonical homomorphism Φ : G→ p

pG is a topological isomorphism.

Lemma (A lemma for Pontryagin duality). For an open subset U of p

pG, there is non-zero f ∈ F∗(L1(pG))
supported on U.

Proof. Let V be an open set such that V V ⊂ U , and take g ∈ Cc(ppG) any non-negative non-zero contin-
uous functions with supp g ⊂ V using the Urysohn lemma. If we define f := g ∗ g, then f 6= 0 and
supp f ⊂ (supp g)(supp g) ⊂ V V ⊂ U .

By the Plancherel theorem, we have Φ∗ ◦F g ∈ B(pG)∩ L2(pG). Since

Φ∗ ◦F f (χ) =

∫

p

pG

x(χ) f (x) d x

=

∫

p

pG

x(χ)

∫

p

pG

g(y)g(y−1 x) d y d x

=

∫

p

pG

g(y)

∫

p

pG

x(χ)g(y−1 x) d x d y

=

∫

p

pG

g(y)

∫

p

pG

y(χ)x(χ)g(x) d x d y

=

∫

p

pG

y(χ)g(y) d y

∫

p

pG

x(χ)g(x) d x = (Φ∗ ◦F g(χ))2

for all χ ∈ pG, we have Φ∗ ◦ F f belongs to B(pG) ∩ L1(pG) by the Hölder inequality. Therefore, by the
inversion theorem, f = F∗ ◦Φ∗ ◦F f is contained in F∗(L1(pG)).

Proof of the Pontryagin duality.
(Continuity) We consider the weak∗ topology on p

pG as a subspace of L1(pG)∗. Note that for any
ϕ ∈ L1(pG) we have

∫

pG

Φ(x)(χ)ϕ(χ) dχ =

∫

pG

χ(x)ϕ(χ) dχ = Φ∗ ◦F∗ϕ(x).
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Since Φ∗◦F∗ϕ is a continuous function on G by the part (c) of Proposition 4.5, we obtain Φ(xα)→ Φ(x)
in p

pG if xα→ x in G
(Embedding) We will show that Φ is a topological embedding. The injectivity of Φ clearly follows.

Suppose a net xα does not converge to e in G. We may assume by taking a subnet that there is a
symmetric open neighborhood U of e in G such that xα /∈ U for allα. Take a non-zero function f ∈ Cc(G)
such that f (e) 6= 0 and supp f ⊂ V , where V is a symmetric open neighborhood of e ∈ G satisfying
V V ⊂ U . Since g = f ∗ ∗ f is positive definite so that f ∗ ∗ f ∈ B(G)∩ L1(G), so ϕ := F g ∈ L1(pG) satisfies
supp(Φ∗ ◦F∗ϕ) = supp( f ∗ ∗ f ) ⊂ U by the Fourier inversion.

Then, we have Φ∗ ◦ F∗ϕ(xα) = 0 for all α but Φ∗ ◦ F∗ϕ(e) 6= 0. Then, since Φ∗ ◦ F∗ϕ(x) =
∫

Φ(x)(χ)ϕ(χ) dχ, the function Φ(xα) does not converges to Φ(x) in the weak∗ topology of L1(pG)∞,

which is the same topology on p

pG = (L1(pG))p. Therefore, Φ : G→ p

pG is a topological embedding.
(Surjectivity) Now let y ∈ Φ(G) such that there is a net xα ∈ G satisfying Φ(xα)→ y in p

pG. Since
Φ(xα) is Cauchy and Φ is an embedding, xα is also Cauchy. Because every locally compact group is
complete, xα→ x in G. Then, Φ(x) = Φ(limα xα) = limαΦ(xα) = y implies y ∈ Φ(G), so Φ(G) is closed
in p

pG.
Now suppose that Φ(G) is not dense in p

pG. Then a non-zero function f ∈ F∗(M(pG)) vanishes on
Φ(G) by the previous lemma. For µ ∈ M(pG) such that f = F∗µ, we have Φ∗ ◦ F∗µ = f |Φ(G) = 0, so
µ = 0 by the Bochner theorem, and it leads to a contradiction to f 6= 0. Therefore, Φ(G) is a closed
dense subset of p

pG, which proves that Φ is surjective.

References

[1] BOCHNER, S. Vorlesungen über Fouriersche integrale, vol. 12. Akademische Verlagsgesellschaft,
1932.

[2] CARATHÉODORY, C. Über den variabilitätsbereich der koeffizienten von potenzreihen, die
gegebene werte nicht annehmen. Mathematische Annalen 64, 1 (1907), 95–115.

[3] CONWAY, J. B. A course in functional analysis, vol. 96. Springer, 2019.

[4] FOLLAND, G. B. A course in abstract harmonic analysis, vol. 29. CRC press, 2016.

[5] HERGLOTZ, G. Uber potenzreihen mit positivem, reelen teil im einheitskreis. Ber. Verhandl. Sachs
Akad. Wiss. Leipzig, Math.-Phys. Kl. 63 (1911), 501–511.

[6] LÉVY, P. Calcul des probabilités. Gauthier-Villars, 1925.

[7] MATHIAS, M. Über positive fourier-integrale. Mathematische Zeitschrift 16 (1923), 103–125.

[8] MURPHY, G. J. C*-algebras and operator theory. Academic press, 2014.

[9] PARTHASARATHY, K. R. Probability measures on metric spaces, vol. 352. American Mathematical
Soc., 2005.

[10] PHELPS, R. R. Lectures on Choquets theorem. Springer, 2001.

[11] PONTRJAGIN, L. The theory of topological commutative groups. Annals of Mathematics (1934),
361–388.

[12] STEWART, J. Positive definite functions and generalizations, an historical survey. Rocky Mountain
J. Math. 6, 4 (1976), 409–434.

[13] TOEPLITZ, O. Über die fouriersche entwickelung positiver funktionen. Rendiconti del Circolo
Matematico di Palermo (1884-1940) 32, 1 (1911), 191–192.

41



[14] VAN KAMPEN, E. R. Locally bicompact abelian groups and their character groups. Annals of Math-
ematics (1935), 448–463.

42


